

Final Report

AREA B – SOIL VAPOR EXTRACTION PILOT TEST

SAIC Project 01-1633-00-9823-000

Prepared for

Harley-Davidson Motor Company Operations, Inc.

York, PA

July 2007

Final Report Area B – Soil Vapor Extraction Pilot Test

SAIC Project 01-1633-00-9823-000

Prepared for

Harley-Davidson Motor Company Operations, Inc. York, PA

Prepared by

Science Applications International Corporation 6310 Allentown Boulevard Harrisburg, PA 17112 (717) 901-8100

July 2007

Respectfully submitted,

Roger D. Myers Project Chemist

Reviewed by:

Stephen M. Snyder, P.G. Project Director Rodney G. Myers Project Manager

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION AND BACKGROUND	3
	2.1 Area B Background2.2 SVE Background	
3.0	AIR PERMIT	7
4.0	SOIL SAMPLE RESULTS	.8
5.0	SVE WELL CONSTRUCTION	9
6.0	SVE PILOT STUDY SETUP1	0
	 6.1 SVE Pilot Test Process and Instrument Setup	0
7.0	PILOT STUDY RESULTS1	3
	 7.1 Shallow Extraction Well Step-Test Results	4 4 6
8.0	CONCLUSIONS1	9
9.0	REFERENCES2	1

LIST OF FIGURES

Figure 1, Site Location Map	Following Text
Figure 2, Area B SVE Location Map	Following Text
Figure 3, SVE Well Construction Details	Following Text
Figure 4, Monitoring Well Construction Details	Following Text
Figure 5, SVE Connection Details	Following Text
Figure 6, Shallow Extraction Well - Extraction Flow Rate vs. Applied Vacuum	Following Text
Figure 7, Deep Extraction Well - Extraction Flow Rate vs. Applied Vacuum	Following Text
Figure 8, Shallow Extraction Well Radius of Influence	Following Text
Figure 9, Deep Extraction Well Radius of Influence	Following Text
Figure 10, Depth to Water in Temporary Well Throughout Pilot Study	Following Text

LIST OF TABLES

Table 1, Initial Detected VOCs in Soil	Following Text
Table 2, Summary of Well Construction Details	Following Text
Table 3, Summary of Shallow Extraction Well Step Test Results	Following Text
Table 4, Summary of Deep Extraction Well Step Test Results	Following Text
Table 5A, Shallow Extraction Well 48-hour Pilot Test Results – Extraction	
Well Parameters	Following Text
Table 5B, Shallow Extraction Well 48-hour Pilot Test Results – Monitoring	
Well Parameters	Following Text
Table 6, Laboratory Reported Chlorinated VOC Concentrations from	
Air Samples	Following Text
Table 7, Calculation of Total VOC Loading Rates	Following Text
Table 8A, Deep Extraction Well 48-hour Pilot Test Results – Extraction	
Well Parameters	Following Text
Table 8B, Deep Extraction Well 48-hour Pilot Test Results – Monitoring	
Well Parameters	Following Text

LIST OF APPENDICES

Appendix A, Request for Determination (RFD)	.Following Text
Appendix B, Soil Boring and Well Construction Logs	.Following Text
Appendix C, Photographic Log of Site Work	U
Appendix D, Laboratory Analytical Reports	e
Appendix E, Loading Rate Calculations	U
- ppenani 2, 2000-8 rate Curenanons	

1.0 EXECUTIVE SUMMARY

Science Applications International Corporation (SAIC) conducted a soil vapor extraction (SVE) pilot study from April 23 to April 28, 2007, at the Harley-Davidson Motor Company Operations, Inc. (Harley-Davidson) York Vehicle Operations Plant, York, Pennsylvania. The purpose of the SVE pilot study was to evaluate the feasibility of using a full-scale SVE system to remediate volatile organic compounds (VOCs) in the subsurface soils discovered during the Eden Road relocation investigation. The specific area is designated Area B, and its location with respect to the Harley-Davidson facility is shown on Figure 1. Area B encompasses a 9,100-square-foot area along the western property boundary of Harley-Davidson, as shown on Figure 2.

The SVE pilot study for the subsurface soils in Area B has shown that this vacuum extraction system can successfully and efficiently remove VOCs from the subsurface soils. The system consisted of a five-horsepower (Hp) blower connected to two-inch-diameter screened polyvinyl chloride (PVC) pipes in two depth zones beneath a synthetic liner.

The shallow zone tested consists of yellowish-brown silt from approximately 2 to 12 feet deep. This zone was tested at 68 inches water column (WC) and 350 standard cubic feet per minute (SCFM) during the 48-hour continuous test. Significant concentrations of trichloroethene (TCE) and tetrachloroethene (PCE) were removed from the shallow zone during this test. TCE concentrations in the extracted soil gas started at 79 parts per million (ppm) and were reduced to 71 ppm at the end of the test for a 9.6 percent drop in concentration. PCE concentrations started at 49 ppm and were reduced to 41 ppm at the end of the test for a 15 percent drop in concentration. An average of 24 pounds of VOCs per day was removed from the shallow zone during the test period. Based on stabilized vacuum readings in the nearby monitoring wells, the effective radius of influence for the shallow zone is 21 feet.

The deep zone tested consists of gravelly, silty sand from a depth of 12 to approximately 20 feet. This deep zone was tested at 70 inches WC and 176 SCFM during the 48-hour continuous test. Slightly lower concentrations of TCE and PCE were removed from the deep zone during this test. TCE concentrations in the extracted soil gas started at 41 ppm and were reduced to 19 ppm at the end of the test for a 52 percent drop in concentration. PCE concentrations started at 33 ppm and were reduced to 18 ppm at the end of the test for 44 percent drop in concentration. An average of 5.8 pounds of VOCs per day was removed from the deep zone during the test period. Based on stabilized vacuum readings in the nearby monitoring wells, the effective radius of influence for the deep zone is 16.5 feet.

The consistent vacuum readings achieved in adjacent monitoring wells throughout the testing of the shallow and deep zones were attributed, in part, to the cap over the test area. This cap prevented short-circuiting of vapors from the surface and likely increased the effective radius of the system.

Based on the results of the SVE pilot study, SAIC has determined that soil gas extraction is a viable remedial option that should be considered for Area B and similar areas of VOC-impacted soils in the West Parking Lot (WPL) area. The results of this test are suitable to be used for estimating costs, effectiveness, and designing a full-scale system.

2.0 INTRODUCTION AND BACKGROUND

On August 1, 2006, SAIC prepared a draft work plan for the completion of an SVE pilot test in Area B. That work plan was sent for review to Harley-Davidson, AMO Environmental Decisions, United States Environmental Protection Agency (EPA), United States Army Corps of Engineers (USACE), and the Pennsylvania Department of Environmental Protection (PADEP). Some of the comments on that work plan involved the location of the extraction well, monitoring in a shallow fill layer, and drilling separate boreholes for the various zones. Final revisions to the work plan were agreed upon on December 1, 2006. The start of site work was delayed for some time due to weather and other unforeseen conditions at the plant. Soil sampling was initiated in March 2007, and the drilling was initiated in the beginning of April 2007. The Area B SVE pilot study was conducted between April 23 and April 28, 2007.

2.1 Area B Background

According to historic results of soil borings and sampling conducted within Area B (SAIC, May 2004), TCE and PCE are the two primary VOCs detected in these soils. Concentrations of these VOCs ranged up to 110 and 4,100 milligrams per kilogram (mg/kg) for TCE and PCE, respectively. The highest concentrations were generally found near the surface; however, elevated concentrations of these VOCs were also found to depths of 12 feet below ground surface (bgs). The observed soil properties within Area B consisted of surficial/shallow fill and clayey silt to depths of up to five feet bgs. Most of the observed soil textures consisted of yellowish-brown (10YR 5/6) silt (ML), ranging in depth from 2 to 12 feet bgs. Elevated photoionization detector (PID) readings were generally highest within this region. Below this depth, an abrupt change to more sandy, gravelly-textured soil (gravelly, silty sand) was observed in each soil boring. The depth to this texture change ranged from south to north from 11 to 13 feet bgs. PID readings and concentrations of VOCs within this zone were generally lower than in the upper silt. Groundwater is present within this portion of the site at the depth of approximately 20 feet bgs.

A cap was installed over the contaminated soils in Area B during the fall of 2005. This cap consists of a 40-mil geomembrane liner over the contaminated soils of Area B, overlain by 18 inches of clean soil and followed by 6 inches of seeded topsoil. The extent and design of this cap can be seen on Figure 2. The cap provides for reduced infiltration of surface water into the contaminated media, and it prevents physical contact of these soils by other receptors. In addition, this cap provides a significant surface seal which will enable SVE to be more effective. As part of the Area B cap construction project, the general vicinity was cleared of vegetation and a gravel drive was constructed as an entryway into Area B.

2.2 SVE Background

SVE, also known as "soil venting" or "vacuum extraction," is an in-situ remedial technology that reduces concentrations of volatile constituents adsorbed to soils in the unsaturated (vadose) zone. In this technology, a vacuum is applied to the subsurface through wells or trenches within the contaminated soil area. Volatile constituents of the contaminant mass "evaporate," and the vapors are drawn toward the extraction wells. Extracted vapor is then treated, as necessary (commonly with carbon adsorption), before being released to the atmosphere. Wells may be either vertical or horizontal. In shallow groundwater areas, water table depression pumps are often used to offset the effect of groundwater upwelling induced by the vacuum.

According to EPA documents ("How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: A Guide for Corrective Action Plan Reviewers" [EPA 510-B-95-007] and USACE Engineering Manual [EM 1110-1-4001] "Soil Vapor Extraction and Bioventing"), this technology has been proven effective in reducing concentrations of VOCs. SVE is generally more successful when applied to lighter (more volatile) organic compounds. SVE has also been used successfully to remove VOCs from soil at two other locations at Harley-Davidson's York facility.

In this technology, a vacuum is applied to the contaminated soil matrix through extraction wells which creates a negative pressure gradient that causes movement of vapors toward these wells. Volatile constituents in the vapor phase are removed from the subsurface through the extraction wells. The extracted vapors are then treated or discharged directly to the atmosphere (as permitted by applicable state laws).

Some of the factors that will be determined to evaluate the effectiveness of SVE are:

- Volatility and solubility of contaminants,
- Soil gas permeability of the soil,
- Soil structure and stratification,
- Soil moisture, and
- Depth to groundwater.

The soil gas permeability of the soil affects the rate of air and vapor movement through the soil. Higher permeability soils permit faster movement of vapors and a greater volume of vapors that can be extracted.

Soil structure and stratification are important to SVE effectiveness because they can affect how and where soil vapors will flow within the soil matrix under extraction conditions. Structural characteristics (e.g., layering and fractures) can result in preferential flow behavior that can lead to ineffective remediation or significantly extended remediation times.

High moisture content in the soil reduces the soil air permeability and, consequently, the effectiveness of SVE by restricting the flow of air through soil pores. Fine-grained soils create a thicker capillary fringe than coarse-grained soils, making proximity to the water table a larger concern in fine-grained soils.

SVE is generally not effective in treating soils below the top of the capillary fringe unless water table depression pumps are used to draw down the water table. In the vicinity of the extraction wells, the water table responds to the vacuum by rising, or "upwelling," which can cause the soils around the well screen to become saturated, thereby reducing airflow.

Pilot studies are an important part of the design phase, necessary to properly design the full-scale SVE system based on site-specific parameters such as soil gas permeability and pore gas velocity. Pilot studies also provide information on the concentrations of VOCs that are likely to be extracted during the early stages of operation of the SVE system. Fluctuations in the groundwater table should also be considered when designing an SVE system. Significant seasonal or daily (tidal or precipitation-related) fluctuations may, at times, submerge some of the contaminated soil or a portion of the extraction well screen, making it unavailable for airflow. This is most important for horizontal extraction wells, where the screen is parallel to the water table surface.

Design radius of influence (ROI) is defined as the greatest distance from an extraction well at which the induced vacuum causes a sufficient soil pore gas velocity to adequately volatilize and extract the contaminants from the soil. Based on published research (DiGiulio and Ravi, 1999), a soil pore velocity of 0.01 to 0.001 centimeters per second (cm/s) will define the ROI. An effective design requires that extraction wells be placed so that the overlap in their radii of influence completely covers the area of contamination. Surface seals are considered in an SVE system design to prevent surface water infiltration that can reduce airflow rates, prevent vertical short-circuiting of airflow, or increase the design ROI.

Based on the physical properties of the soils, the depth to water table, and the chemical constituents to be remediated in Area B, SVE appears to be an effective remedial method. The purpose of the pilot test is to generate specific design data, such as extraction airflow capacity, vacuum ROI, soil gas permeability, applied wellhead vacuum, blower capacity, extraction well spacing, and off-gas treatment capacity. According to the results of three previous SVE pilot tests (conducted beneath the north end of Building 4, near a former degreaser within Building 2, and west of Building 45), an effective ROI is anticipated to be within a range of approximately 15 to 25 feet.

3.0 AIR PERMIT

As part of the project initiation procedures, SAIC applied to the PADEP for a Request for Determination (RFD) for air permit. This was required because the project was discharging the off-gas from the blower to the atmosphere after treatment through granular activated carbon (GAC). The RFD package was submitted to the PADEP on March 20, 2007. PADEP signed the RFD on March 27, 2007, indicating that no plan approval and no operating permit were required for this project. A copy of the signed RFD data package is presented in Appendix A.

4.0 SOIL SAMPLE RESULTS

Prior to drilling the SVE extraction and monitoring wells, SAIC collected additional subsurface soil samples from each of the five well locations to better define the extent of VOCs in the soil. This information was more important for the deeper zone (12 to 22 feet), where previous soil sampling was limited. This subsurface soil sampling was completed on March 8, 2007, using a Geoprobe[®] at each of the five vapor extraction and monitoring well locations. Logs from these borings are included in Appendix B. Soil samples were selected from three depths in each boring, based on highest PID readings. One sample was collected from the upper zone (0 to 12 feet), and two samples were collected from the lower zone. Each soil sample was submitted to Severn Trent Laboratories under written chain-of-custody and analyzed for VOCs under SW-846 Methods 5035/8260. The soil sample results are shown on Table 1. VOCs detected at highest concentrations were PCE and TCE. Minor concentrations of cis-1,2-dichloroethylene and methylene chloride were detected in some of the soil samples. The highest PCE concentrations were found in PZ-S5 (9.5 to 10 feet) at 790 micrograms per kilogram (µg/kg), PZ-S15 (11.5 to 12 feet) at 690 μ g/kg, and in VEW-1 (6.5 to 7 feet) at 580 μ g/kg. The highest TCE concentrations were found in PZ-S15 (11.5 to 12 feet) at 1,300 µg/kg, PZ-S5 (9.5 to 10 feet) at 1,200 μ g/kg, and in PZ-S5 (14 to 14.5 feet) at 750 μ g/kg. Soil samples taken from borings located south of the extraction well had much higher concentrations of TCE and PCE than soil samples taken from borings east of the extraction well.

SAIC also constructed one temporary well using the Geoprobe[®] on March 8, 2007. The location of the temporary well is shown on Figure 2 and can be seen in photograph no. 1 in Appendix C. The temporary well was used to evaluate the depth to groundwater during the construction of the SVE wells and during the pilot study testing. One-inch PVC screen and riser were installed to a depth of 21 feet bgs. PVC riser from this well extends approximately two feet above ground surface and is completed with a locking compression cap.

5.0 SVE WELL CONSTRUCTION

SAIC subcontracted the services of Eichelbergers Well Drilling to construct one multilevel SVE extraction well and four multilevel SVE monitoring points in accordance with the well construction details shown in Figure 3 and Figure 4. These wells were constructed on April 2 and April 3, 2007. Monitoring point placement was designed to be at distances of 5 and 15 feet from the extraction well, as shown on Figure 2. The SVE wells were designed to be installed to a maximum depth of up to 22 feet bgs.

Prior to the drilling and construction of the SVE wells, the depth to groundwater was determined within Area B. The depth to groundwater in the temporary well on April 2, 2007, was 19.63 feet bgs. In addition, groundwater was encountered in the first well at 21 feet bgs. Consequently, the bottoms of the monitoring and extraction wells were constructed approximately two feet above the water-bearing zone.

Air-rotary well drilling techniques were implemented using a 10-inch-diameter hammer bit to minimize the smearing of the walls (see photograph no. 2 of Appendix C). Two-inch-diameter PVC well screens and casing were installed in the SVE extraction well, and one-inch PVC screen and casing were installed in the SVE monitoring points. Two screened sections were installed in the SVE extraction well (from 3 to 13 feet and from 16 to 19 feet below the liner). Three screened sections were installed in each of the four SVE monitoring wells (from 2.5 to 3.0 feet, from 7 to 11 feet, and from 16 to 190 feet bgs). A summary of well construction details is shown on Table 2, while the completed well construction logs are provided in Appendix B.

6.0 SVE PILOT STUDY SETUP

The purpose of the pilot test was to generate specific design data, such as extraction airflow capacity, vacuum ROI, soil gas permeability, applied wellhead vacuum, blower capacity, extraction well spacing, and off-gas treatment capacity. The following subsections describe how the pilot test was set up and operated in order to obtain this information.

6.1 SVE Pilot Test Process and Instrument Setup

The pilot study equipment included the use of a single dual-level SVE extraction well which was designed to pull vapors from a shallow (1 to 11 feet deep) silt layer, as well as from a deeper (12 to 20 feet deep) gravelly, silty sand layer. Vacuum was generated using a single 5 Hp regenerative blower (see photograph no. 3 in Appendix C) which was powered by a 25-kilowatt trailer-mounted generator (see photograph no. 4 in Appendix C). The extracted vapors were pulled through a moisture knockout tank (see photograph no. 5 in Appendix C) to remove the condensate generated from the subsurface. The exhaust was directed through a series of vapor-phase carbon canisters for removal of extracted VOCs (see photograph no. 6 in Appendix C). The pilot study vapor extraction well was connected to the SVE pilot test system, as depicted on Figure 5 and as seen in photograph no. 7 in Appendix C.

A series of four multilevel SVE monitoring wells was installed along two perpendicular lines at distances of approximately 5 and 15 feet from the pilot study vapor extraction well. Each of the vapor monitoring wells was constructed with three sets of screens: one in the upper 2 feet of fill, one in the fill from 7 to 11 feet deep, and a third in the sandy/gravelly zone from 16 to 19 feet deep (as depicted in Figure 4).

6.2 SVE Step-Tests

The SVE step-test for the shallow extraction well was started on April 23, 2007, at 3:45 p.m. and was completed on April 23, 2007, at 9:15 p.m. The SVE step test for the deep extraction well was started on April 24, 2007, at 8:00 a.m. and was completed on April 24, 2007, at 1:15 p.m.

The SVE step-test was performed on both screened intervals of the extraction well (shallow and deep), with three vacuum flow rates (50 percent, 75 percent, and 100 percent blower capacity) to determine the efficiency of each extraction well zone at the various flow rates. Each step-test was run for a period of 2 hours, for a total of 12 hours for the 6 step-tests. The step-tests from the shallow zone were completed before switching to the deeper zone. Step-test data collection included measuring induced subsurface vacuum at each monitoring point, along with measuring applied vacuum, VOCs, and air velocity from the extraction well. Photograph nos. 8 and 9 in Appendix C show the vacuum and velocity measurement ports used for the project. In addition, the depth to water was monitored at the temporary monitoring well installed at a horizontal distance of 47 feet from the extraction well. Data readings were collected approximately every 15 to 30 minutes during each step-test. Following the step-tests, collected data were analyzed to determine the optimum applied vacuum and flow rate for each zone during the longer pilot test.

6.3 SVE 48-Hour Continuous Tests

The pilot study step-test results were used to select an optimum vacuum and extraction flow rate for each zone during the longer pilot study test. Using these optimum parameters, a 48-hour SVE pilot test was conducted for each of the two depth zones identified. The upper silt zone test was completed first, followed by the lower gravel/sand zone. The 48-hour test for the shallow zone was started on April 24, 2007, at 3:20 p.m. and completed on April 26, 2007, at 3:50 p.m. The 48-hour test for the deep zone was started on April 26, 2007, at 4:00 p.m. and was completed on April 28, 2007, at 4:00 p.m. Data collection included measuring induced subsurface vacuum at each vapor point, along with measuring applied vacuum, VOCs, and air velocity from the extraction well. The monitoring parameters were measured at 15- to 30-minute intervals until stabilization of trends occurred, after which the interval was increased to 1 hour.

Two vapor samples were collected during each pilot test. One vapor sample was collected at the beginning (after approximately 1 hour of operation) of the 48-hour test, and one was collected at the end of the test. All four vapor samples were collected in evacuated vials using a syringe from the top of the extraction well (see port and evacuated vial in photograph nos. 10 and 11 of Appendix C). The vapor samples in the evacuated vials were submitted to VaporTech of

Valencia, Pennsylvania, and analyzed for halogenated organic compounds by gas chromatography (GC) methods.

Following the completion of the pilot tests, the extraction system equipment was disassembled and removed from the site. A sample of the vapor-phase carbon was collected and analyzed for Toxicity Characteristic Leaching Procedure (TCLP)-VOCs to determine the appropriate disposal method. Upon receipt of laboratory analysis of the soil (drill cuttings) and carbon, these materials were shipped off-site for disposal at a properly permitted facility. Seven drums of soil cuttings were disposed off-site as nonhazardous waste by Harley-Davidson. The carbon material exceeded the TCLP limit for TCE of 0.5 milligrams per liter (mg/L), and these two drums of GAC were disposed off-site at a properly permitted facility as a hazardous waste by Harley-Davidson.

Following the completion of the project, the extraction well and monitoring well PVC stick-up casings were cut to just below the ground surface. Each of these well locations was then completed with a flush-mount drive-over lid cemented into place. The completed casings can be seen in photograph no. 12 of Appendix C.

7.0 PILOT STUDY RESULTS

Field data from the pilot tests described above were used to evaluate the effectiveness of an SVE system at Area B. The results from the step-tests and the 48-hour continuous pilot tests are described in the following subsections.

7.1 Shallow Extraction Well Step-Test Results

The field data results from the shallow SVE extraction well (VEW-1 S) step-test are presented in Table 3. The applied vacuum on the wellhead for each of the 3 (2-hour) steps was 49 inches of WC, 59 inches WC, and 66 inches WC, respectively. With each step, as the applied vacuum on the wellhead increased, there was a corresponding increase in the extraction flow rate, which ranged from 302 to 455 SCFM. The stabilized average extraction flow rates for each step were approximately 320 SCFM, 390 SCFM, and 455 SCFM, respectively.

The concentrations of VOCs in the extracted air were measured with a PID in the untreated influent stream and at the influent and effluent locations to each GAC treatment. The wellhead influent VOC concentrations during this test increased with each step and ranged from 214 parts per million by volume (ppmv) to 488 ppmv. From Table 3, it can be seen that the GAC canisters were able to capture all of the VOCs during the shallow step-test. No VOCs were detected with the PID at the discharge of the second GAC unit during this step-test. In addition, no influence was observed on the water table during this shallow step-test. The water level in the nearby temporary well remained at 22.80 feet below top of casing during this step-test. In addition, the water level measured in the adjacent deep extraction well did not rise above 19.7 feet below top of casing during this step-test.

The optimal applied vacuum and flow rate were determined in the field by plotting the step-test data on a linear graph. Figure 6 presents a plot of the applied vacuum measured on the shallow extraction wellhead (VEW-1 S) versus the vapor extraction flow rate. Since no negative inflection is shown on that graph, the optimum vacuum and flow rate would be the maximum shown for the third step (66 inches WC and 455 SCFM).

7.2 Deep Extraction Well Step-Test Results

The field data results from the deep SVE extraction well (VEW-1 D) step-test are presented in Table 4. The applied vacuum on the wellhead for each of the 3 (2-hour) steps was 55 inches WC, 70 inches WC, and 80 inches WC, respectively. With each step, as the applied vacuum on the wellhead increased, there was a corresponding increase in the extraction flow rate, which ranged from 181 to 301 SCFM. The stabilized average extraction flow rates for each step were approximately 190 SCFM, 230 SCFM, and 280 SCFM, respectively.

The concentrations of VOCs in the extracted air were measured with a PID in the untreated influent stream and at the influent and effluent locations to each GAC treatment. The wellhead VOC concentrations during this test ranged from 312 ppmv to 415 ppmv. PID wellhead concentrations were similar for the first two steps of this test but were slightly less during the third step. From Table 4, it can be seen that the GAC canisters were able to capture all of the VOCs during the deep step-test. No VOCs were detected with the PID at the discharge of the second GAC unit during this step-test. In addition, no influence was observed on the water table during this deep step-test. The water level in the nearby temporary well did not rise above 22.90 feet below top of casing during this step-test.

The optimal applied vacuum and flow rate were determined in the field by plotting the step-test data on a linear graph. Figure 7 presents a plot of the applied vacuum measured on the deep extraction wellhead (VEW-1 D) versus the vapor extraction flow rate. Since no negative inflection is shown on that graph, the optimum vacuum and flow rate would be the maximum shown for the third step (80 inches WC and 280 SCFM).

7.3 Shallow Extraction Well 48-Hour Continuous Pilot Test Results

The results for the shallow extraction well (VEW-1 S) 48-hour continuous pilot test are presented in Tables 5A and 5B. Based on the shallow step-test results, the optimal applied vacuum and flow rate for the shallow 48-hour continuous pilot test were to be 68 inches WC and

350 SCFM. The actual applied vacuum as shown on Table 5A ranged between 66 and 68 inches WC.

The stabilized subsurface vacuum readings at each screened interval (shallow, intermediate, and deep zones) and at each monitoring point (PZ-S 5, PZ-S 15, PZ-E 5, and PZ-S 15) for the shallow zone test are shown on Table 5B. These data were plotted versus the distance from the extraction well on Figure 8 to determine the effective ROI for the shallow extraction well. The effective ROI is shown as the distance from the extraction well, where the induced subsurface vacuum is greater than 0.05 inches of water column. The effective ROI for the shallow extraction well is shown to be between 19 feet and 23 feet, with an average of 21 feet.

The concentrations of VOCs in the extracted air were measured with a PID in the contaminated influent air and at the influent and effluent locations to each GAC treatment, as shown in Table 5A. The wellhead VOC concentration ranged from a high of 497 ppmv at the beginning of 48-hour test to a low of 99 ppmv at the end of the 48-hour test. It can also be seen on Table 5A that the effluent air concentration from the final GAC drum remained undetected throughout the duration of the test.

For the shallow zone, one vapor sample was collected at the beginning (after approximately one hour of operation) of the 48-hour test, and one was collected at the end of the test. Both vapor samples were collected in evacuated vials using a syringe from the top of the extraction well (see photograph nos. 10 and 11 in Appendix C). Both vapor samples were submitted to VaporTech laboratory and analyzed for halogenated organics by GC methods. The analytical results for these vapor samples are presented in Appendix D and summarized in Table 6. There were seven chlorinated compounds detected in the extracted vapors; however, the vast majority of this was TCE and PCE. Table 6 shows that during the 48-hour pilot study for the shallow zone, TCE concentration dropped by 9.59 percent and PCE dropped by 14.92 percent.

The analytical results for these samples were used in conjunction with the extraction flow rates to calculate VOC loading rates for TCE and PCE. The formulas and calculations for the pilot

study airflow and VOC loading rates are presented in Appendix E. The shallow zone loading rates are found in Tables E-1 through E-4 of Appendix E.

The average VOC loading rate calculated from the shallow extraction well during the pilot test was 24.2 pounds per day as shown in Table 7.

7.4 Deep Extraction Well 48-Hour Continuous Pilot Test Results

The results from the deep extraction well (VEW-1 D) for the 48-hour continuous pilot test are presented in Tables 8A and 8B. Based on the step-test results, the optimal vacuum and flow rate applied to the wellhead during the 48-hour pilot test were 70 inches WC and 176 SCFM. The actual blower vacuum used during the 48-hour pilot test ranged from 68 to 71 inches WC as shown on Table 8A.

The stabilized subsurface vacuum readings at each screened interval (shallow, intermediate, and deep zones) and at each monitoring point (PZ-S 5, PZ-S 15, PZ-E 5, and PZ-S 15) for the deep zone test are shown on Table 8B. These data were plotted versus the distance from the extraction well on Figure 9 to determine the effective ROI for the deep extraction well. The effective ROI is shown as the distance from the extraction well, where the induced subsurface vacuum is greater than 0.05 inches of water column. The effective ROI for the deep extraction well is shown to be between 16 feet and 17 feet, with an average of 16.5 feet.

The concentrations of VOCs in the extracted air were measured with a PID in the contaminated influent air and at the influent and effluent locations to each GAC treatment, as shown in Table 7A. The wellhead VOC concentration ranged from a high of 497 ppmv at the beginning of 48-hour test to a low of 143 ppmv at the end of the 48-hour test. It can also be seen on Table 7A that the effluent air concentration from the final GAC drum remained undetected throughout the duration of the test.

For the deep zone, one vapor sample was collected at the beginning (after approximately one hour of operation) of the 48-hour test, and one was collected at the end of the test. Both vapor

samples were collected in evacuated vials using a syringe from the top of the extraction well (see photographs 10 and 11 in Appendix C). Both vapor samples were submitted to VaporTech laboratory and analyzed for halogenated organics by GC methods. The analytical results for these vapor samples are presented in Appendix D and summarized in Table 6. There were five chlorinated compounds detected in the extracted vapors; however, the vast majority of this was TCE and PCE. Table 6 shows that during the 48-hour pilot study for the shallow zone, TCE concentrations dropped by 52.11 percent and PCE dropped by 43.75 percent.

The analytical results for these samples were used in conjunction with the extraction flow rates to calculate VOC loading rates for TCE and PCE in the deep zone. The formulas and calculations for the pilot study airflow and VOC loading rates are presented in Appendix E. The deep zone loading rates are found in Tables E-5 through E-8 of Appendix E.

The average VOC loading rate calculated from the deep extraction well during the pilot test was 5.8 pounds per day as shown in Table 7.

7.5 Water Level Results

SAIC measured the depth to water in the temporary well during the SVE step-tests, and during the 48-hour continuous tests. This was done to determine if the water table was being influenced by the induced vacuums. The depths to water in the temporary well were recorded on Tables 3 and 4 for step-tests in the shallow and deep zones. In addition, the depths to water in the temporary well were recorded in Tables 5A and 8A for the 48-hour tests in the shallow and deep zones. Each of these water level data was plotted versus time on Figure 10. From this figure, it can be seen that the water levels did not appear to be influenced by the vacuums on the shallow or deep step-test on April 24, 2007. There did appear to be an increase in the water level elevation during the middle of the shallow zone 48-hour continuous test. In addition, there appeared to be an increase in the water level elevation during the end of the deep zone 48-hour continuous test. This increase in water level did not seem to be significant because very little water was trapped in the knockout drum during the pilot study. A total of approximately 10 gallons of water was found in the knockout drum at the end of all the SVE testing. This water

was noticed mainly during the final 48-hour continuous test of the deep zone. The water trapped in the knockout drum was transferred to the groundwater treatment system after the SVE system was dismantled.

8.0 CONCLUSIONS

The SVE pilot study for the subsurface soils in Area B has shown that this vacuum extraction system can successfully and efficiently remove VOCs from the subsurface soils. The system consisted of a five Hp blower connected to two-inch-diameter screened PVC pipe systems in two depth zones beneath a synthetic liner.

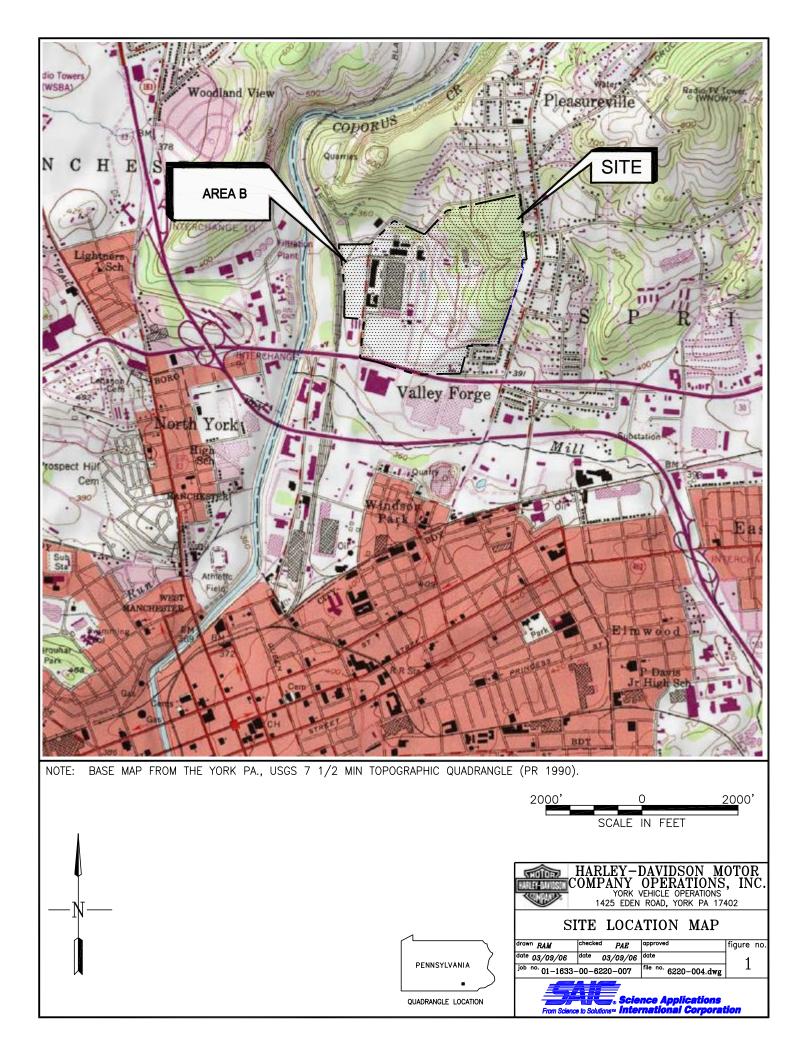
The shallow zone tested consists of yellowish-brown silt from approximately 2 to 12 feet deep. This zone was tested at 68 inches WC and 350 SCFM during the 48-hour continuous test. Significant concentrations of TCE and PCE were removed from the shallow zone during this test. TCE concentrations started at 79 ppm and were reduced to 71 ppm at the end of the test for a 9.6 percent removal rate. PCE concentrations started at 49 ppm and were reduced to 41 ppm at the end of the test for a 15 percent removal rate. An average of 24 pounds of VOCs per day was removed from the shallow zone during the test period. Based on stabilized vacuum readings in the nearby monitoring wells, the effective ROI for the shallow zone is 21 feet.

The deep zone tested consists of a gravelly, silty sand from a depth of 12 to approximately 20 feet. This deep zone was tested at 70 inches WC and 176 SCFM during the 48-hour continuous test. Slightly lower concentrations of TCE and PCE were removed from the deep zone during this test. TCE concentrations started at 41 ppm and were reduced to 19 ppm at the end of the test for a 52 percent removal rate. PCE concentrations started at 33 ppm and were reduced to 18 ppm at the end of the test for 44 percent removal rate. An average of 5.8 pounds of VOCs per day was removed from the shallow zone during the test period. Based on stabilized vacuum readings in the nearby monitoring wells, the effective ROI for the deep zone is 16.5 feet.

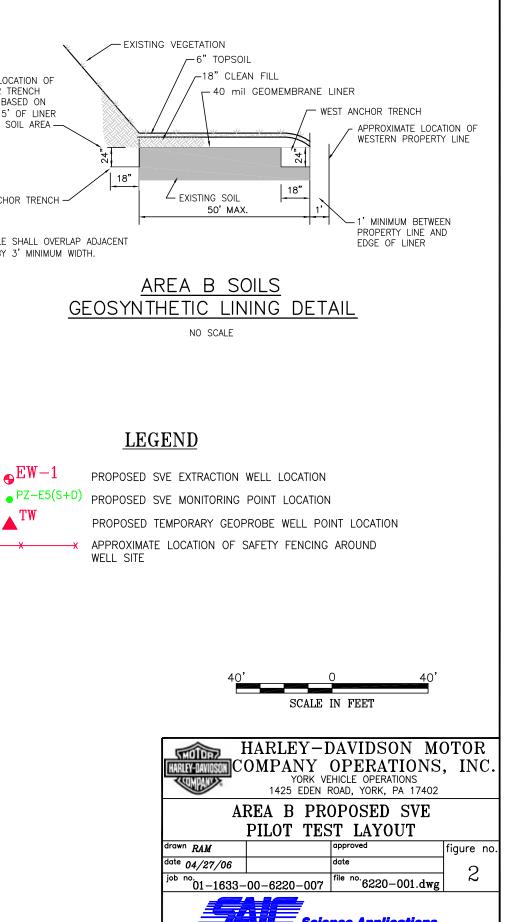
The highest concentrations of the chlorinated compounds are found in the shallow silt zone, with slightly less concentrations in the deep zone. The concentrations of TCE were shown to be about twice as high as the PCE concentrations in the soil and in the vapor. The SVE system was able to remove approximately six times more VOCs from the shallow zone as compared to the deep zone. However, the deep zone concentrations of the VOCs during the test period dropped more

rapidly as compared to the shallow zone. This may be due to the contaminant's ability to be retained more tightly in the shallow silt zone.

The consistent vacuum readings achieved in adjacent monitoring wells throughout the testing of the shallow and deep zones are attributed to the cap over the test area. This cap prevents short-circuiting of vapors from the surface and likely increases the effective radius of the system.

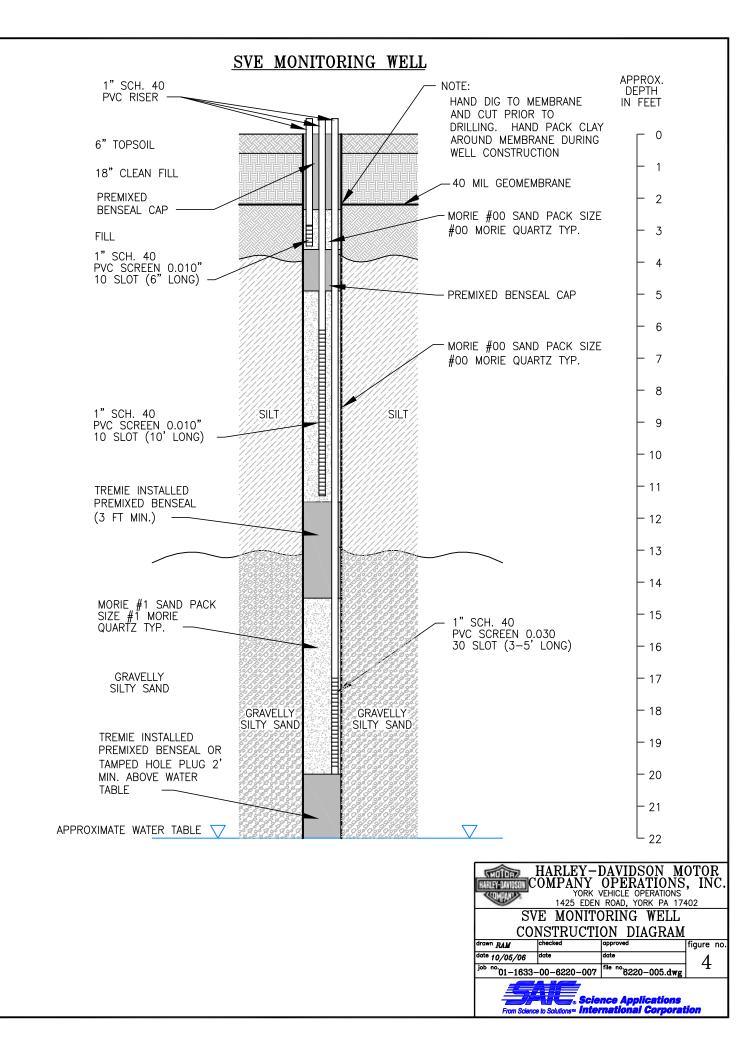

Based on the results of the SVE pilot study, SAIC has determined that soil gas extraction is a viable remedial option that should be considered for Area B and similar areas of VOC-impacted soils in the West Parking Lot (WPL) area. The results of this test are suitable to be used for estimating costs, effectiveness, and designing a full-scale system.

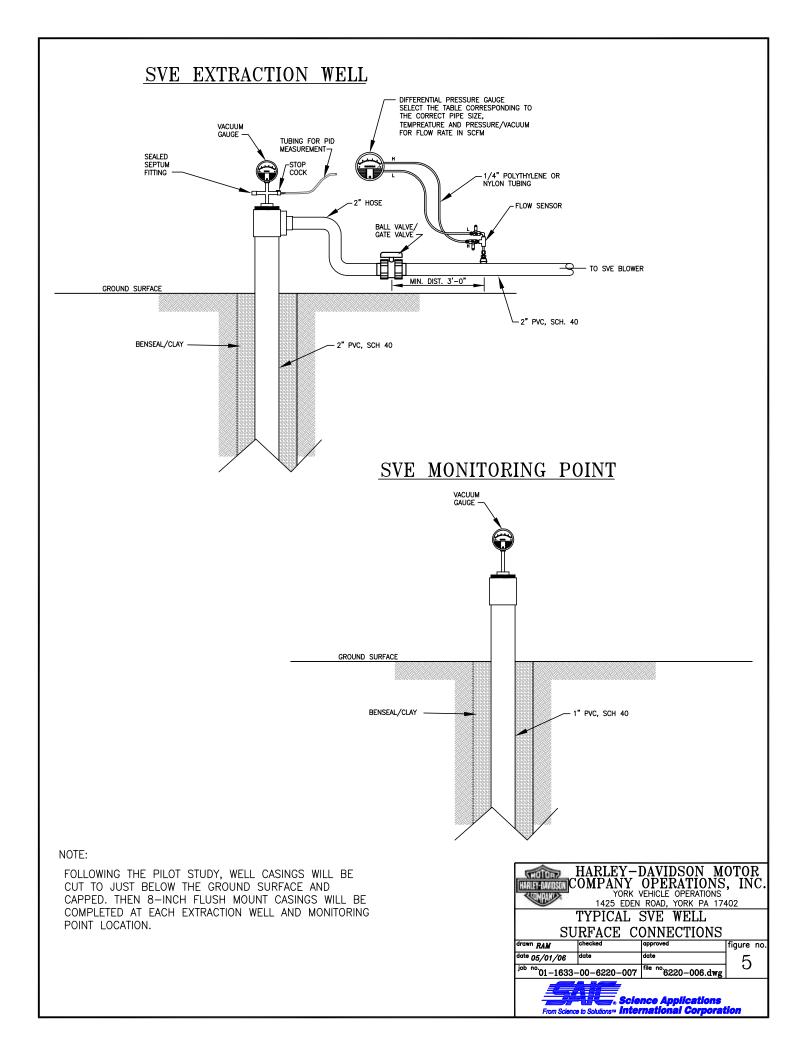

9.0 **REFERENCES**

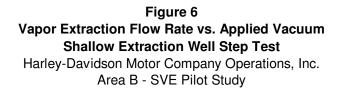

- EPA, 1995. How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: A Guide for Corrective Action Plan Reviewers. (EPA 510-B-95-007.
- USACE, 2001. USACE Engineering Manual (EM 1110-1-4001) Soil Vapor Extraction and Bioventing.
- Kearney, A. T., 1989. Phase II RCRA Facility Assessment of the Harley-Davidson York, Inc. Facility, York, Pennsylvania, EPA ID No. PAD 001 643 691, EPA Contract No. 68-01-7038, January.

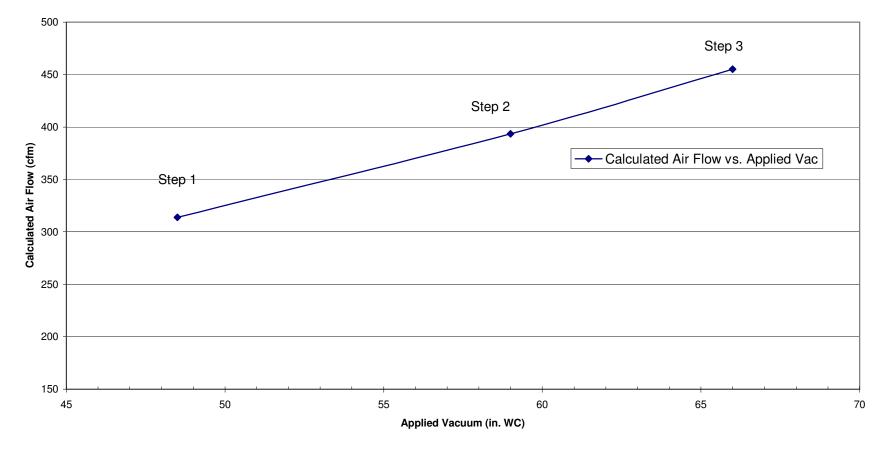
FIGURES

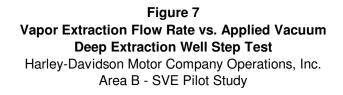
Science Applications International Corporation

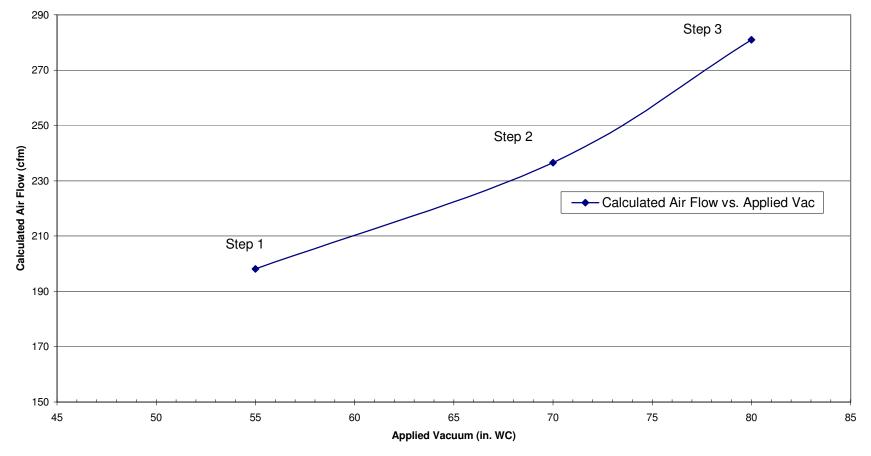
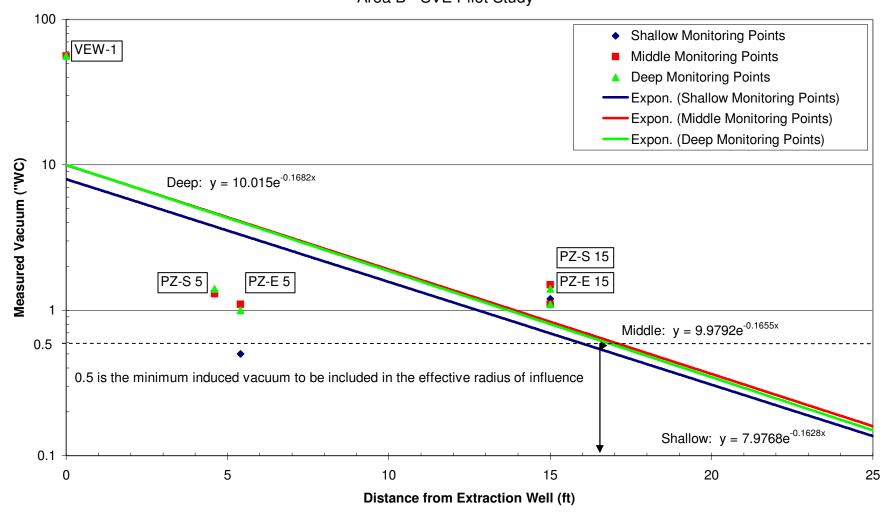







From Science to Solutions[®] International Corporation



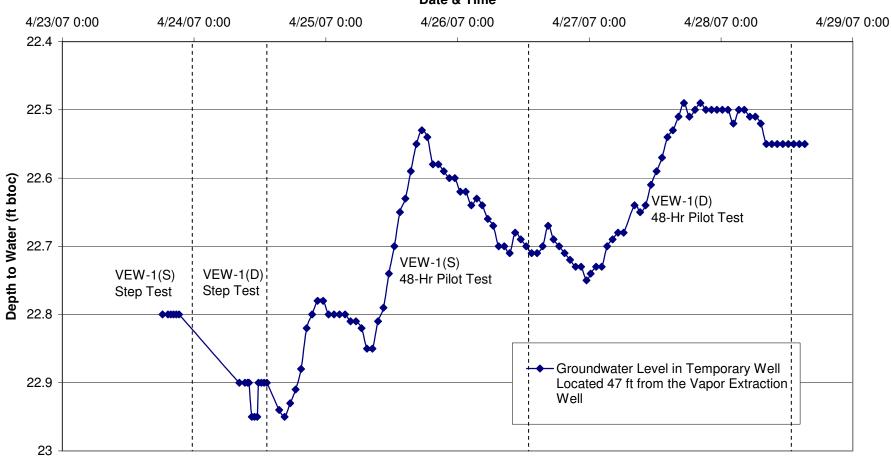

Figure 8 Shallow Extraction Well - Radius of Influence Harley-Davidson Motor Company Operations, Inc.

Figure 9 Deep Extraction Well - Radius of Influence Harley-Davidson Motor Company Operations, Inc. Area B - SVE Pilot Study

Figure 10 Depth to Water in the Temporary Well Througout the SVE Pilot Study Harely-Davidson Motor Company Operations, Inc.

Area B - SVE Pilot Study

Date & Time

TABLES

Table 1Initial Detected VOCs in SoilArea B Soil Vapor Extraction Pilot Study

Boring	Depth	PCE	TCE	cis 1,2-DCE	Methylene Chloride
Identification	(feet)	ug/kg	ug/kg	ug/kg	ug/kg
PZ-S15	11.5 - 12	690	1300	37 J	63 J
PZ-S15	18 - 18.5	41	130	6 J	2.2 J
PZ-S15	19.5 - 20	20	60	1.2 J	3.5 J
PZ-S5	9.5 - 10	790	1200	ND	61 J
PZ-S5	13 - 13.5	18	42	0.66 J	ND
PZ-S5	14 - 14.5	360	750	ND	37 J
EW-1	6.5 - 7	580	610	150 J	42 J
EW-1	14 - 14.5	390	730	ND	45 J
EW-1	15.5 - 16	62	150	3.2 J	1.5 J
PZ-E5	9 - 9.5	40	48	2.6 J	ND
PZ-E5	14 - 14.5	46	100	3.3 J	1.9 J
PZ-E5	19.5 - 20	2.5 J	4.2 J	ND	ND
PZ-E15	9 - 9.5	58	59	3.1 J	4.9 J
PZ-E15	15 - 15.5	41	76	3.6 J	2.3 J
PZ-E15	19.5 - 20	4.9 J	3.5 J	ND	ND

Harley-Davidson Motor Company Operations, Inc.

ND = not detected above the method detection limit.

J = estimated quantitation. Result is above method detection, but below reporting limit.

ug/kg = microgram per kilogram (parts per billion)

PCE = tetrachloroethylene

TCE = trichloroethylene

cis 1,2-DCE = cis 1,2-dichloroethylene

Table 2 Summary of Well Construction Details

Harley-Davidson Motor Company Operations, Inc. Area B - SVE Pilot Study

Area	в-	SVI	IOL	Study	1

Well	Shallow, Middle, Deep	Borehole Diameter	Well Diameter	Borehole TD		Screen I (ft bls)		Pack I (ft bls)
		(inches)	(inches)	(ft bls)	Тор	Bottom	Тор	Bottom
	S	10	0.0	22	3	13	2	13.5
VEW-1	D	10	2.0	22	16	19	15	19.5
	S			22	2.5	3	2	4
PZ-S 5	М	10	1.0	22	7	11	6	12
	D			22	16	19	15	19.5
	S			22	2.5	3	2	4
PZ-S 15	м	10	1.0	22	7	11	6	12
	D			22	16	19	15	19.5
	S			22	2.5	3	2	4
PZ-E 5	м	10	1.0	22	7	11	6	12
	D			22	16	19	15	19.5
	S			21	2.5	3	2	4
PZ-E 15	М	10	1.0	21	7	11	6	12
	D			21	16	19	15	20

ft bls = feet below land surface TD = total depth

Table 3 Shallow Extraction Well - SVE Step Test Results Harley-Davidson Motor Company Operations, Inc.

Area B - SVE Pilot Study

			Step	1 (Start Date &	Time - 4/23/07	15:45)	Step	2 (Start Date &	Time - 4/23/07	17:30)	Step	3 (Start Date &	Time - 4/23/07	19:15)
	VEW-1(S)							Ti	me					
	• •	Units	16:00	16:30	17:00	17:30	17:45	18:15	18:45	19:15	19:45	20:15	20:45	2
wein	ead Parameters							Elapsed Tin	ne (minutes)	•				
			15	45	75	105	15	45	75	105	30	60	90	
Applied	Blower	in. WC	49	49	48.5	48.5	59	59	59	59	64	66	66	
Vacuum	VEW-1(S)	in. WC	25.0	25.0	25.0	25.0	34.0	35.0	34.0	34.0	41.0	41.0	41.0	
Induc	ed Vac VEW-1(D)	in. WC	10	11	11	11	15	17	16.5	16.5	20	20	20	
VI	EW-1(D) DTW	ft btoc	>19.7	>19.7	>19.7	>19.7	>19.7	>19.7	>19.7	>19.7	>19.7	>19.7	>19.7	
Blowe	er Discharge Temp	°F	172	165	171	172	182	180	178	176	190	192	190	
	Air Velocity	fpm	4010	3530	3464	3595	4920	4696	4613	4510	5177	5168	5086	
	Air Flow	cfm	350	308	302	314	429	410	403	394	452	451	444	
Extr	raction Air Temp	°F	87.2	88.6	78.9	81.4	78	72.8	72.8	69	68.3	67.6	66.3	
W	/ellhead VOCs	ppmv	214	258	275	304	339	370	409	422	437	451	486	
GAC	C 1 Influent VOCs	ppmv	107	99.8	112	116	180	195	197	214	338	321	362	
GAC	2 Influent VOCs	ppmv	0.2	2.1	2.9	3.6	18.5	27.5	14.2	34.7	49.1	45.3	54.3	
GAC	2 Effluent VOCs	ppmv	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Tem	porary Well DTW	ft btoc	NM	NM	NM	NM	NM	22.80	NM	22.80	22.80	22.80	22.80	

			Dist. From					5	Subsurface Va	acuum (in. WO	C)				
Monitorin	ng Point	Units	VEW-1		Ste	ep 1			Ste	ep 2			Ste	ep 3	
			(ft)	15 min.	45 min.	75 min.	105 min.	15 min.	45 min.	75 min.	105 min.	30 min.	60 min.	90 min.	120 min.
	(S)	in. WC	4.6	3.7	3.6	3.9	3.9	5.1	5.2	NM	5.1	6.1	6.1	6.1	6.2
PZ-S 5	(M)	in. WC	4.6	4	3.9	4.2	4.2	5.4	5.5	NM	5.5	6.5	6.5	6.5	6.7
	(D)	in. WC	4.6	1.2	1.2	1.6	1.4	1.8	2	NM	1.8	2.2	2.3	2.3	2.3
	(S)	in. WC	15	0	0	0.3	0.2	0.1	0.1	NM	0	0	0.1	0.1	0.1
PZ-S 15	(M)	in. WC	15	2.4	2.5	2.7	2.7	3.4	3.5	NM	3.4	4.1	4.2	4.2	4.2
	(D)	in. WC	15	0.9	0.9	1.2	1.1	1.4	1.4	NM	1.3	1.5	1.6	1.6	1.7
	(S)	in. WC	5.4	0.3	0.3	0.5	0.5	0.4	0.4	NM	0.4	0.5	0.5	0.5	0.5
PZ-E 5	(M)	in. WC	5.4	1.6	1.6	1.9	1.9	2.4	2.4	NM	2.3	2.7	2.9	2.9	2.9
	(D)	in. WC	5.4	1.4	1.4	1.6	1.6	2	2	NM	2	2.3	2.5	2.4	2.4
	(S)	in. WC	15	2.8	2.8	3	3.1	3.8	3.9	NM	3.8	4.5	4.6	4.6	4.6
PZ-E15	(M)	in. WC	15	1.1	1.1	1.3	1.3	1.6	1.6	NM	1.4	1.8	2	1.9	2
	(D)	in. WC	15	1.1	0.9	1.2	1.1	1.4	1.4	NM	1.3	1.6	1.7	1.6	1.7

fpm = feet per minute NM = Not Measured °F = Degrees Fahrenheit ppmv = parts per million volum VOCs = Volatile Organic Compounds VEW = Vacuum Extraction W \in WC = inches of water column (S),(M),(D) = Shallow, Medium, Deep ft btoc = feet below top of casing cfm = cubic feet per minute

Table 4 Deep Extraction Well - SVE Step Test Results Harley-Davidson Motor Company Operations, Inc.

Harley-Davidson Motor Company Operations, Inc.
Area B - SVE Pilot Study

			Step	1 (Start Date &	Time - 4/24/07	08:00)	Step	2 (Start Date &	Time - 4/24/07	09:45)	Step	3 (Start Date &	Time - 4/24/07	11:30)
	VEW-1(D)							Ti	me					
	nead Parameters	Units	8:15	8:45	9:15	9:45	10:00	10:30	11:00	11:30	11:45	12:15	12:45	13:15
weini	leau Parameters							Elapsed Tin	ne (minutes)					
			15	45	75	105	15	45	75	105	15	45	75	105
Applied	Blower	in. WC	55	55	55	55	70	70	70	70	82	80	80	80
Vacuum	VEW-1(D)	in. WC	40.0	40.0	40.0	40.0	53.0	54.0	54.0	54.0	63.0	62.0	62.0	62.0
Induc	ed Vac VEW-1(S)	in. WC	7	7	7	7	9	9	9	9	10	10	10	10
Blowe	er Discharge Temp	°F	170	172	172	179	202	201	200	202	220	230	240	242
	Air Velocity	fpm	2115	2070	2205	2270	2670	2580	2521	2710	3193	3030	3450	3220
	Air Flow	cfm	185	181	192	198	233	225	220	236	279	264	301	281
Extr	raction Air Temp	°F	80.2	76.6	81.8	89.2	83.4	75.7	75	79.3	83.8	79.8	87	88.2
w	Vellhead VOCs	ppmv	383	388	393	415	387	372	380	392	321	312	368	359
GAC	C 1 Influent VOCs	ppmv	128	122	129	118	206	200	210	212	310	318	320	312
GAC	C 2 Influent VOCs	ppmv	12.7	13	16.3	10	19	17.5	20.1	22.1	40	40.7	42.1	40.1
GAC	2 Effluent VOCs	ppmv	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tem	porary Well DTW	ft btoc	22.90	NM	22.90	22.90	22.90	22.95	22.95	22.95	22.90	22.90	22.90	22.90

			Dist. From					S	Subsurface Va	icuum (in. WO	C)				
Monitorin	ng Point	Units	VEW-1		Ste	p 1			Ste	ep 2			Ste	е р 3	
			(ft)	15 min.	45 min.	75 min.	105 min.	15 min.	45 min.	75 min.	105 min.	30 min.	60 min.	90 min.	120 min.
	(S)	in. WC	4.6	1.4	1.3	1.4	1.4	1.8	1.8	1.8	1.8	1.9	2.1	2.1	2.1
PZ-S 5	(M)	in. WC	4.6	1.4	1.4	1.4	1.5	2	2	2	2	2.1	2.2	2.2	2.1
	(D)	in. WC	4.6	1.6	1.6	1.7	1.7	2.2	2.2	2.2	2.2	2.4	2.5	2.5	2.5
	(S)	in. WC	15	0	0	0	0	0	0	0	0	0	0	0	0
PZ-S 15	(M)	in. WC	15	0.9	0.9	0.8	0.9	1.3	1.3	1.3	1.3	1.4	1.4	1.4	1.4
	(D)	in. WC	15	0.9	0.9	0.9	0.9	1.2	1.2	1.2	1.2	1.3	1.4	1.4	1.4
	(S)	in. WC	5.4	0	0	0	0	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2
PZ-E 5	(M)	in. WC	5.4	1.4	1.4	1.4	1.4	2	2	2	2.1	2	2.2	2.2	2.2
	(D)	in. WC	5.4	1.6	1.5	1.5	1.4	2	2	2	2	2.1	2.2	2.2	2.2
	(S)	in. WC	15	1.1	1	1	1	1.4	1.4	1.4	1.3	1.5	1.6	0.6	1.6
PZ-E15	(M)	in. WC	15	1.1	0.9	0.9	0.9	1.3	1.3	1.3	1.3	1.4	1.5	1.6	1.5
	(D)	in. WC	15	1	0.9	0.9	0.9	1.3	1.3	1.3	1.3	1.4	1.6	1.5	1.5

fpm = feet per minute NM = Not Measured °F = Degrees Fahrenheit

ppmv = parts per million volume VEW = Vacuum Extraction Well (S),(M),(D) = Shallow, medium, deep

VOCs = Volatile Organic Compounds WC = inches of water column

ft btoc = feet below top of casing cfm = cubic feet per minute

Table 5A Shallow Extraction Well - 48 Hour SVE Pilot Test Results

Summary of Extraction Well Parameters

Harley-Davidson Motor Company Operations, Inc. Area B - SVE Pilot Study

VEW-1 (S)				4/24	/2007																4/25	2007																			4/	/26/200	7						
		-	_																							Time										_									_	1				
Paramete	15:2	15:30	16:30	17:30	18:30	19:30	20:30	21:30	22:30	23:30	0:30	1:30	2:30	3:30	4:30	5:30	6:30	7:30	8:30	9:30	10:30	11:30	12:30		14:30 apsed				18:30	19:30	20:30	21:30	22:30	23:30	0:30	1:30	2:30	3:30	4:30	5:30	6:30	7:30	8:30	9:30	10:30	11:30	12:30	13:30	14:30 1	15:30 15
	0	10	70	130	190	250	310	370	430	490	550	610	670	730	790	850	910	970	1030	1090	1150	1210	1270					-,	1630	1690	1750	1810	1870	1930	1990	2050	2110	2170	2230	2290	2350	2410	2470	2530	2590	2650	2710	2770	2830 2	2890 29
5 Blowe		68	66	66	67	67	67	68	68	68	68	68	68	68	68	68	68	68	67	67	67	66	66	67	67	67	67	68	68	68	68	68	68	68	68	68	68	68	68	68	68	68	68	68	68	68	68	68	68	68
(in. W	C)	00	00	00	07	07	0,	00	00	00	00	00	00	00	00	00	00	00	07	07	07	00	00	0,	07	0/	07	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
VEW-1 (in. W		41	42	41	41	41	42	42	42	42	41	41	41	41	41	41	41	41	41	41	41	41	40	41	41	41	41	41	41	41	41	41	41	41	41	41	40	40	41	40	40	40	41	41	41	40	40	40	40	40
Induced Va VEW-1(D (in. WC))	19	19	19	18	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Blower Discharge Temp (° F		192	200	200	190	188	182	180	167	180	176	176	176	172	170	172	172	176	184	188	190	194	196	192	188	181	179	176	177	175	176	175	174	174	176	174	174	174	174	174	174	176	178	178	180	178	180	180	178	178
Air Velocity (fpm)		5920	5739	5815	5330	5332	4319	4009	3482	4214	3862	3782	3271	3426	3041	3136	3407	3339	4041	4360	4450	5110	5220	4488	4588	3878	3718	3713	3606	3525	3605	3446	3446	3430	3412	3271	3267	3303	3303	3330	3271	3545	3871	4158	4061	3872	4089	4125	3740 3	3998
Calculated Air Flow (cfm)		516.8	3 501	507.6	465.3	465.5	377	350	304	367.9	337.2	330.2	285.6	299.1	265.5	273.8	297.4	291.5	352.8	380.6	388.5	446.1	455.7	391.8	400.5	338.5	324.6	324.1	314.8	307.7	314.7	300.8	300.8	299.4	297.9	285.6	285.2	288.4	288.4	290.7	285.6	309.5	337.9	363	354.5	338	357	360.1	326.5	349
Extraction Air Temp (°F)	Start Tes	81.4	80.5	76.2	66.5	62.5	57.5	54.3	50.8	55.5	52.8	52.5	49	49	47.1	48	49.4	52.5	64.9	68.5	68.3	72.1	72.4	69	62.7	57.3	54.6	53.2	52.5	51.4	51	50.3	50.3	50.1	49.8	49.4	49.4	49.4	49.4	49.4	49.6	50.7	53.5	55.9	55.7	54.6	56.6	57.1	54.4 5	55.9
Wellhead VOCs (ppmv)		340	409	339	202	357	336	352	433	497	490	414	492	494	502	515	523	477	450	435	368	386	345	371	398	329	368	0	0	NM	112	119	149	155	140	162	132	159	155	140	142	99.1	108	104	100	101	115	110	98.7	357
GAC 1 Influent VOCs (ppmv)		294	302	208	343	360	380	391	401	404	383	368	404	396	391	389	395	388	371	345	321	294	283	301	300	307	335	0	0	NM	65.7	67.4	78.6	72.6	89.3	88.3	90.2	102	106	91.3	91.6	87.4	82.5	41.8	42.3	50.3	51.6	48.2	44.5	320
GAC 2 Influent VOCs (ppmv)		14.4	25	33.5	25.4	31	20.3	30.1	24.3	27.3	24.6	26.9	29.9	35.3	33.9	41.4	24.7	29.4	54.1	34.1	56.8	30.7	45.5	39.7	57.6	21.1	29.8	0	0	NM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	133
GAC 2 Effluent VOCs (ppmv)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.7
Temporar MW DTW (ft btoc)		22.94	22.95	22.93	22.91	22.88	22.82	22.8	22.78	22.78	22.8	22.8	22.8	22.8	22.81	22.81	22.82	22.85	22.85	22.81	22.79	22.74	22.7	22.65	22.63	22.59	22.55	22.53	22.54	22.58	22.58	22.59	22.6	22.6	22.62	22.62	22.64	22.63	22.64	22.66	22.67	22.7	22.7	22.71	22.68	22.69	22.7	22.71	22.71	22.7
Laborator Sample	/				*	Samp VEW-1																																										Samp VEW-1		*
* Denotes tin		vapor s	ample v	as colle	ected						Not mea	asured							VOCs =				pounds				°F=d	egrees	Fahren	nheit								A					(0) 40	hr toet		247				

NA = Not Applicable ft btoc = feet below top of pilot test casing fpm = feet per minute cfm = cubic feet per minute Average Airflow for VEW-1(S) 48 hr test = 347 cfm

ppmv = parts per million volume in.WC = inches of water column

Table 5B
Shallow Extraction Well - 48 Hour SVE Pilot Test Results
Summary of Monitoring Point Parameters
Harley-Davidson Motor Company Operations Inc

Harley-Davidson Motor Company Operations, Inc.

						4	/24/200	7														4	25/2007	7																4	/26/200	07					
Monit	oring	Dist. From																								Time																					
Poi		VEW-1	15:20	15:30	16:30	17:30 18:	30 19:	30 20	:30 21:3	80 22:3	0 23:30	0:30	1:30	2:30	3:30	4:30	5:30	6:30	7:30 8	3:30 9:3	30 10:3	0 11:3	12:30		14:30		16:30		30 19:3	0 20:30	21:30	22:30	23:30	0:30	1:30	2:30 3	:30 4:	30 5:30	6:30	7:30	8:30	9:30	10:30	11:30 1	2:30 13	3:30 14:	:30 15:30
		(feet)	0	10	70	130 19	90 25	0 3	10 37	0 430) 490	550	610	670	730	790	850	910	970 1	030 10	90 115	1210	1270		apsed 1 1390			s) 1570 16	169	0 1750	1810	1870	1930	1990	2050	2110 2	170 22	30 229	0 2350	0 2410	2470	2530	2590	2650	2710 2	770 28	30 2890
																					_	-	-	Subsu			_																				
	(S)			5.9	5.9	6.1 6.	2 6.3	2 6	6.3 6.3	6.4	6.4	6.4	6.4	6.5	6.7	6.5	6.5	6.5	6.3	6.3 6.	3 6.3	6.2	6.1	6.2	6.4	6.5	6.5	6.5 6.	5 6.6	6.5	6.5	6.5	6.6	6.7	6.6	6.6	6.6 6.	.5 6.5	6.6	6.6	6.5	6.6	6.5	6.4	6.5 6	6.5 6.	.4 6.5
PZ-S 5	(M)	4.6		6.4	6.3	6.5 6.	7 6.	7 6	6.8	6.8	6.8	6.8	6.8	7	7	6.8	6.8	6.9	6.8	6.7 6	7 6.7	6.6	6.5	6.6	6.7	6.8	6.9	6.9 6.	9 7	6.8	6.8	6.9	6.9	7	7	7	7 6.	.8 6.9	7	6.9	6.8	7	6.9	6.8	6.8 6	6.8 6.	.7 6.8
	(D)			2.2	2.1	2.2 2.	3 2.	2 2	.4 2.3	3 2.3	3 2.4	2.4	2.4	2.5	2.5	2.2	2.3	2.4	2.2	2.2 2	2 2.1	2	2.1	2.1	2.2	2.4	2.4	2.4 2.	3 2.4	2.3	2.2	2.4	2.4	2.4	2.4	2.4	2.4 2.	.2 2.3	2.3	2.3	2.2	2.4	2.4	2.1	2.2 2	2.3 2.	.1 2.2
	(S)			0.1	0.1	0.1 0.	1 0.	1 0	0.1 0.1	0.1	0.1	0.1	0.1	0.3	0.3	0.1	0.1	0.1	0.1	0.1 0.	1 0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.2 0.	1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2 0.	.2 0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.1 0	0.1 0.	.1 0.1
PZ-S 15	(M)	15		4.1	4.1	4.1 4.	.1 4.3	2 4	.2 4.3	3 4.4	4.4	4.4	4.4	4.4	4.4	4.3	4.4	4.4	4.3	4.3 4.	3 4.2	4.1	4.2	4.2	4.3	4.4	4.4	4.4 4.	4 4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4 4.	.2 4.4	4.4	4.4	4.3	4.5	4.4	4.3	4.4 4	1.4 4.	.3 4.4
	(D)		Test	1.6	1.6	1.6 1.	6 1.0	6 1	.6 1.6	6 1.6	5 1.7	1.7	1.8	1.8	1.8	1.6	1.7	1.6	1.6	1.6 1.	7 1.5	1.4	1.4	1.5	1.6	1.8	1.7	1.7 1.	3 1.7	1.6	1.8	1.7	1.7	1.8	1.7	1.8	1.6 1.	.6 1.7	1.7	1.6	1.6	1.7	1.7	1.4	1.6 1	.6 1.	.5 1.5
	(S)		Start	0.4	0.5	0.5 0.	5 0.5	5 0	0.4 0.5	5 0.5	i 0.5	0.5	0.5	0.7	0.7	0.5	0.5	0.5	0.4	0.5 0.	5 0.5	0.4	0.4	0.5	0.5	0.6	0.5	0.5 0.	5 0.5	0.4	0.4	0.5	0.5	0.5	0.5	0.6	0.6 0.	.5 0.5	0.5	0.5	0.5	0.6	0.6	0.5	0.5 0	0.5 0.	.4 0.5
Z-E 5	(M)	5.4		2.7	2.9	2.8 2.	8 2.9	9 2	2.9 2.9	2.9	2.9	3	3	3.1	3.1	2.9	2.9	2.9	2.8	2.8 2	9 2.7	2.7	2.7	2.8	2.9	3.1	3	3 3	3.1	2.9	3	3	3	3	3	3 3	3.4 2.	.9 3	3	2.9	2.9	3	3	2.7	2.9 2	2.9 2.	.7 2.8
	(D)			2.4	2.4	2.4 2.	4 2.4	4 2	2.4 2.4	1 2.4	2.6	2.5	2.5	2.6	2.7	2.4	2.4	2.4	2.4	2.4 2	4 2.3	2.3	2.2	2.3	2.4	2.6	2.5	2.5 2.	5 2.6	2.5	2.5	2.5	2.6	2.6	2.6	2.6	2.5 2.	.4 2.5	2.5	2.4	2.4	2.5	2.6	2.2	2.4 2	2.4 2	.3 2.3
	(S)			4.4	4.5	4.4 4.	5 4.0	6 4	.6 4.6	6 4.7	4.7	4.8	4.8	5	5	4.8	4.8	4.8	4.7	4.7 4.	8 4.6	4.6	4.5	4.6	4.6	4.9	4.8	4.8 4.	9 4.8	4.8	4.8	4.8	4.8	5	4.9	5	5 4.	.8 4.9	4.9	4.8	4.8	4.9	5	4.6	4.8 4	4.8 4.	.7 4.6
PZ-E 15	(M)	15		1.8	2	1.8 1.	9 1.8	8	2 1.9	2	2	2.1	2.1	2.2	2.2	2.2	2	2	1.9	1.9 2	1.8	1.8	1.8	1.8	1.9	2.2	2	2.1 2.	1 2.1	2	2	2	2.1	2.1	2	2.1	2.2 2	2 2	2.1	2	2	2.1	2.1	1.8	2	2 1.	.9 1.9
	(D)			1.6	1.7	1.6 1.	6 1.0	6 1	.6 1.6	6 1.7	1.7	1.8	1.8	1.8	1.9	1.7	1.7	1.7	1.6	1.6 1.	7 1.7	1.5	1.5	1.6	1.6	1.8	1.8	1.8 1.	3 1.8	1.8	1.8	1.7	1.8	1.8	1.8	1.8	1.8 1.	.7 1.7	1.8	1.7	1.7	1.8	1.8	1.4	1.7 1	.6 1	.6 1./

NM = Not measured

in.WC = inches of water column

Table 6Laboratory Reported Chlorinated VOC Concentrations from Air Samples

Harley-Davidson Motor Company Operations, Inc. Area B - Soil Vapor Extraction Pilot Test

	Sample	Shallow	48-hr SVE Pilot T	est	Deep 4	18-hr SVE Pilot Te	est	
	ID	VEW-1(S)A ¹	VEW-1(S)B ²		VEW-1(D)A ¹	VEW-1(D)B ²		
Compound	Date/Time	4/24/07 18:15	4/26/07 15:30	Reduction	4/26/07 16:30	4/28/07 15:30	Reduction	PQL
	Time Elapsed (min)	150	2880	(%)	15	2835	(%)	
1,1 Dichloroethylene	ppmv	0.05	<0.01	80.00	<0.01	<0.01	NA	0.01
Methylene Chloride	ppmv	<0.1	<0.1	NA	<0.1	<0.1	NA	0.1
Trans-1,2 dichloroethylene	ppmv	0.06	0.06	83.33	0.03	<0.01	66.67	0.01
1,1 Dichloroethane	ppmv	<0.05	<0.05	NA	<0.05	<0.05	NA	0.05
Cis-1,2 dichloroethylene	ppmv	12.04	8.3	31.06	4.66	2.74	41.20	0.01
Chloroform	ppmv	0.005	<0.005	0.00	<0.005	<0.005	NA	0.005
1,1,1 Trichloroethane	ppmv	0.399	0.326	18.30	0.28	0.124	55.71	0.005
Carbon Tetrachloride	ppmv	<0.005	<0.005	NA	<0.005	<0.005	NA	0.005
Trichloroethylene	ppmv	79.454	71.837	9.59	40.631	19.46	52.11	0.005
Tetrachloroethylene	ppmv	48.656	41.398	14.92	32.877	18.493	43.75	0.005

Note:

Laboratory results were provided by VaporTech Services, Inc.

1. Sampling Events A were taken at the beginning of their respective 48 hour pilot tests.

2. Sampling Events B were taken at the end of their respective 48 hour pilot tests

PQL = denotes lower "Practical Quantitation Limit"

VOC = Volatile Organice Compound

NA = Not Applicable

Table 7 Calculation of Total VOC Loading Rates

Harley-Davidson Motor Company Operations, Inc. Area B - Soil Vapor Extraction Pilot Test

			Sampling Event												
	Units	Shallov	v Zone	Deep	Zone										
		Initial Sample	Final Sample	Initial Sample	Final Sample										
TCE Loading	lbs/day	14.504	13.113	3.764	1.803										
PCE Loading	lbs/day	11.207	9.535	3.843	2.162										
Total VOC Loading Rate	lbs/day	25.711	22.648	7.607	3.964										

TCE - Trichloroethylene

PCE - Tetrachloroethylene

Shallow Zone:

	Average Total VOC Loading = Time of test =
	Total shallow zone removal =
Deep Zone:	
	Average Total VOC Loading =
	Time of test =
	Total deep zone removal =

Combined VOC Removal During Pilot Test:

24.179 lbs/d
2 days
48.36 pounds
1

5.786 lbs/d
2 days
11.57 pounds

59.93 pounds

Table 8A Deep Extraction Well - 48 Hour SVE Pilot Test Results

Summary of Extraction Well Parameters

Harley-Davidson Motor Company Operations, Inc. Area B - SVE Pilot Study

VEW-1 (D)				4/26/2	007				4/27/2007 4/28/2007																																							
																										me																							
Parameter	16:0	0 16:1	15 17:	15 18:1	5 19:1	5 20:15	21:15	22:15	23:15	0:15	1:15	2:15	3:15	4:15	5:15	6:15	7:15	8:15	9:15	10:15	11:15	12:15	13:15					18:15	19:15	20:15	21:15	22:15	23:15	0:15	1:15	2:15	3:15	4:15	5:15	6:15	7:15	8:15	9:15	10:15	11:15	12:15	13:15 14	:15 15:1	5 16:00
					- 1																				sed Tin																								
	0	15	5 75	5 13	5 195	255	315	375	435	495	555	615	675	735	795	855	915 9	975	1035	1095	1155	1215	1275	1335	1395	1455	1515	1575	1635	1695	1755	1815	1875	1935	1995	2055	2115	2175	2235	2295	2355	2415	2475	2535	2595	2655	2715 27	75 283	5 2880
Blowe (in. Wo		68	3 68	3 70	70	70	71	71	71	70	71	70	70	70	70	70	70	70	69	70	69	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70 7	0 70	i
peilddy (in. Wo		53	3 54	56	56	56	56	57	57	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	57	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56 5	6 56	1
Induced Va VEW-1(S) (in. WC)		7	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6 6	
Blower Discharge Temp (° F		178	8 18	0 18	2 182	182	182	169	172	172	172	176	174	176	178	176	178	180	180	182	184	184	188	190	189	192	192	193	191	187	185	182	182	184	184	182	184	186	182	180	182	191	195	199	200	200	200 2	00 19	5
Air Velocity (fpm)		212	21 197	78 181	5 182	1722	1724	1771	1722	1718	1706	1689	1704	1640	1706	1690	1686 1	748	1832	1927	1983	1976	2018	2040	1949	2133	2019	1946	1890	1767	1722	1771	2214	2843	2826	3133	2709	1959	2468	1854	1793	2183	2225	2271	2287	2259	2268 22	88 229	13
Calculated Air Flow (cfm)	ł	185	.2 172	.7 158	.4 158.	9 150.3	150.5	154.6	150.3	150	148.9	147.4	148.8	143.2	148.9	147.5	147.2 1	52.6 1	159.9	168.2	173.1	172.5	176.2	178.1	170.1	186.2	176.3	169.9	165	154.3	150.3	154.6	193.3	248.2	246.7	273.5	236.5	171	215.5	161.9	156.5	190.6	194.2	198.3	199.7	197.2	198 19	9.7 200	.2
Extraction Air Temp (° F)			5 57	5 56.	1 54.8	53.2	52.8	49.4	49.2	49.2	49.2	48.9	48.9	49	49.2	49.4	49.8 5	50.8	52.8	56.4	58.2	58.2	60.6	61.5	59.5	64.3	61.6	61.6	28.6	54.1	53.5	53.5	59.5	62.5	61.6	62.9	61.5	60.6	56.8	51	55.2	64.8	67.2	73.1	75	72	72.6 7	.5 62.	Stop Test
Wellhead VOCs (ppmv)	ŝ	189	9 14	9 21:	2 210	497	362	238	235	212	164	249	188	237	231	240	233	213	117	224	137	185	193	141	156	178	172	159	198	215	207	159	198	216	221	221	213	223	225	227	207	189	177	171	167	172	168 1	56 14	
GAC 1 Influent VOCs (ppmv)		120	0 11	0 98.	6 108	122	115	117	122	108	104	94.3	96.7	93.1	100	112	98.1 9	92.5	100	100	94.8	95.1	95.2	88.3	91.2	86.5	97.2	93.6	89.9	101	95.1	86.7	86.7	86.5	88.3	83.4	88.3	85.3	86.4	84.3	94.8	92.1	93.8	85.2	80.7	72.1	70 7	.2 68.	3
GAC 2 Influent VOCs (ppmv)		95.	4 14	5 17	9 203	229	185	198	204	152	141	147	154	213	222	243	229	258	240	259	264	276	260	294	279	283	268	258	261	227	198	129	136	145	163	136	145	143	122	134	126	115	178	152	162	151	143 1	52 14	D
GAC 2 Effluent VOCs (ppmv)		0	0	0	15.3	17.6	19.3	0.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
Temporary MW DTW (ft btoc)		22.6	67 22.0	69 22.	7 22.7	1 22.72	22.73	22.73	22.75	22.74	22.73	22.73	22.7	22.69	22.68	22.68	NM 2	2.64 2	22.65	22.64	22.61	22.59	22.57	22.54	22.53	22.51	22.49	22.51	22.5	22.49	22.5	22.5	22.5	22.5	22.5	22.52	22.5	22.5	22.51	22.51	22.52	22.55	22.55	22.55	22.55	22.55	22.55 22	.55 22.5	55
Laboratory Sample	'	*		Sampl VEW-1																																										VE	W-1 (D)-B	*	

* Denotes time when vapor sample was collected NA = Not Applicable ft btoc = feet below top of pilot test casing

NM = Not measured fpm = feet per minute cfm = cubic feet per minute VOCs = volatile organic compounds ppmv = parts per million volume in.WC = inches of water column

° F = degrees Fahrenheit

Average Airflow for VEW-1(D) Test = 176.1 cfm

Table 8B
Deep Extraction Well - 48 Hour SVE Pilot Test Results
Summary of Monitoring Point Parameters
Harley-Davidson Motor Company Operations, Inc.

Area B - SVE Pilot Study

						4/:	26/200	7														4	/27/20	07																	4	/28/20	07							
		Dist.																								٦	Time																							
Monito Poi	nt ۱	From VEW-1	16:00	16:15	17:15	18:15	19:15	20:15 2	21:15	22:15	23:15	0:15	1:15	2:15	8:15	4:15 5:1	5 6:15	5 7:1	5 8:1	5 9:	15 10	:15 11	:15 12	2:15 13	:15 14:1	5 15:	:15 16	:15 17:	15 18:1	15 19	:15 20:15	21:15	22:15	23:15	0:15 1	:15 2	:15 3:1	5 4:15	5:15	6:15	7:15	8:15	9:15	10:15	11:15	12:15	13:15	14:15	15:15	16:00
		(feet)																							Elap	sed T	lime (minute	5)																					
			0	15	75	135	195	255	315	375	435	495	555	615 6	675	735 79	5 855	91	5 97	5 10	35 10	95 11	155 12	215 12	75 133	5 13	95 14	455 15	15 157	75 16	35 1695	1755	1815	1875	1935 1	995 2	055 21	15 2175	2235	2295	2355	2415	2475	2535	2595	2655	2715	2775	2835 2	2880
																					Ме	asure	d Ind	uced S	Subsur	face \	Vacu	um (in.	WC)																					
	(S)			1.6	1.6	1.4	1.3	1.3	1.3	1.6	1.5	1.4	1.3	1.2	1.3	1.5 1.6	1.5	1.6	5 1.0	6 1.	.7 1	.7 1	.6 1	.5 1	.6 1.6	6 1.	.6 1	.6 1.	6 1.5	5 1	.5 1.6	1.6	1.6	1.3	1.3	.5	.4 1.	4 1.5	1.4	1.6	1.5	1.4	1.4	1.4	1.3	1.3	1.3	1.3	1.3	
PZ-S 5	(M)	4.6		1.7	1.6	1.5	1.4	1.4	1.4	1.8	1.8	1.5	1.7	1.6	1.7	1.7 1.7	1.8	1.6	5 1.	7 1.	.8 1	.8 1	.7 1	.6 1	.7 1.6	6 1.	.6 1	.8 1.	6 1.6	6 1	.6 1.7	1.7	1.5	1.6	1.6	.6	.6 1.	6 1.6	1.7	1.7	1.6	1.5	1.4	1.4	1.4	1.4	1.3	1.3	1.3	
	(D)			2	1.9	1.8	1.6	1.7	1.7	2.2	2.2	1.7	1.9	1.8	1.8	1.8 1.9	2	1.8	3 1.8	8 1.	.9	2 1	.9 1	.8 1	.8 1.8	3 1.	.8 2	2.1 1.	9 1.8	3 1	.8 1.9	2	1.9	1.9	1.8	.7	.7 1.	8 1.8	1.8	2	1.9	1.8	1.7	1.6	1.6	1.4	1.4	1.4	1.4	
	(S)			0	0	0	0	0	0	0.1	0.1	0.1	0	0.3	0.3	0.3 0.3	0.5	0.5	i 0.4	4 0.	.5 0	.6 0	.5 (0.4 0	.4 0.4	¥ 0.	.5 0	0.5 0.	3 0.3	3 0	.3 0.3	0.3	0.2	0.9	0.8).8 (0.7 0.	7 0.8	0.8	0.8	0.8	0.7	0.7	0.6	0.6	0.4	0.4	0.4	0.5	
PZ-S	(M)	15		1.1	1.1	1	0.8	0.9	0.9	1.1	1.2	1	1.2	1.2	1.1	1.3 1.2	1.1	1.3	1.	1 1.	.3 1	.3 1	.2 1	.2 1	.2 1.1	1 1.	.3 1	.3 1.	1 1.1	1 1	.1 1.1	1.2	1.1	1.3	1.2	.3	.2 1.	1 1.2	1.3	1.3	1.3	1.2	1.1	1.1	1.1	1	1.1	1.1	1.1	
10	(D)		Test	1.1	1.1	1	1	0.9	1	1.3	1.3	1.1	1.2	1.1	1.1	1.1 1.1	1.1	1.1	1	1.	.2 1	.2 1	.1 1	.1 1	.1 1.1	1 1.	.3 1	.3 1.	1 1.1	1 1	.1 1.1	1.1	1.1	1.1	1.1	.8	.1 1.	1 1.1	1.2	1.2	1.1	1	0.9	1	1	1	1	1	1	est
	(S)		Start 7	0	0.1	0.1	0	0	0.1	0	0.1	0	0.8	1.1	1.4	1.4 1.5	1.6	1.6	5 1.	5 1.	.6 1	.6 1	.5 1	.4 1	.4 1.4	1 1.	.4 1	.4 1.	4 1.3	3 1	.3 1.3	1.3	1.1	1.4	1.4	.4	.4 1.	4 1.3	1.4	1.5	1.5	1.3	1.1	1.1	1.1	1.1	1.1	1.1	1.1	Stop 1
PZ-E 5	(M)	5.4	•,	1.7	1.6	1.5	1.4	1.4	1.4	1.4	1.6	1.5	1.7	1.8	1.8	1.7 1.8	1.8	1.7	1.0	6 1.	.8 1	.8 1	.7 1	.7 1	.7 1.6	5 1.	.8 1	.8 1.	6 1.6	6 1	.6 1.7	1.7	1.6	1.6	1.6	.6	.6 1.	6 1.6	1.8	1.8	1.7	1.7	1.6	1.5	1.4	1.4	1.4	1.5	1.5	
	(D)			1.8	1.6	1.5	1.4	1.4	1.4	1.5	1.9	1.6	1.7	1.8	1.8	1.7 1.8	1.7	1.8	3 1.0	6 1.	.9 1	.8 1	.7 1	.7 1	.7 1.6	5 1.	.8	2 1.	7 1.6	6 1	.6 1.7	1.8	1.6	1.7	1.6	.7	.6 1.	6 1.6	1.8	1.8	1.8	1.7	1.6	1.4	1.4	1.4	1.4	1.4	1.4	
	(S)			1.3	1.1	1.1	1	1	1.1	1.1	1.2	1.3	1.3	1.4	1.4	1.4 1.5	1.4	1.4	F 1.4	4 1.	.5 1	.5 1	.4 1	.4 1	.4 1.3	3 1.	.4 1	.4 1.	4 1.3	3 1	.3 1.4	1.4	1.4	1.4	1.3	.3	.3 1.	3 1.3	1.4	1.5	1.5	1.4	1.3	1.2	1.2	1.2	1.2	1.2	1.2	
PZ-E	(M)	15		1.1	1.1	1	1	1	1.1	1.1	1.2	1.1	1.2	1.3	1.3	1.2 1.3	1.3	1.2	2 1.3	2 1.	.4 1	.3 1	.3 1	.2 1	.2 1.1	1 1.	.3 1	.4 1.	2 1.3	3 1	.2 1.2	1.3	1.3	1.2	1.2	.2	.1 1.	1 1.1	1.3	1.3	1.2	1.2	1.2	1.1	1.1	1.1	1.1	1.1	1.1	
10	(D)			1.2	1.1	1.1	1	1	1.1	1.1	1.1	1.1	1.2	1.1	1.1	1.3 1.3	1.3	1.2	2 1.3	2 1.	.4 1	.3 1	.2 1	.2 1	.2 1.1	1 1.	.3 1	.4 1.	2 1.1	1 1	.2 1.2	1.3	1.2	1.2	1.2	.2	.1 1.	1 1.1	1.3	1.3	1.2	1.2	1.2	1.1	1	1.1	1.1	1.1	1.1	

NM = Not measured in.WC = inches of water column

APPENDIX A

Request for Determination (RFD)

2700-F	PM-AQ0017 7/2001			
		COMMONWEALTH OF F DEPARTMENT OF ENVIRONM BUREAU OF AIR	ENTAL PROTECTION	alarta. Data Alarta
		Request for Determination for Plan Approval/Operation		
(Sub	mit in Triplicate)	for Plan Approval/Opera	aung Fernin (Kr.	Air QUALITY
Α.	Application is being made	for: [please mark the appropriate	e case(s)]	
	Exemption from Plan A	Approval	Exemption from	om Operating Permit
	Physical Changes of Min	or Significance		
	significance must no (APCA), the Clean A emission increases a quality impact for an	of violate the terms of an opera Air Act or regulations adopted the bove the emissions allowable in air contaminant. Changes may	ating permit, the Penn nereunder. In addition the operating permit of be made within seve	(1)). Physical changes of minor nsylvania Air Pollution Control Act n, these changes can not result in or result in an increased ambient air en (7) days after the Department's mation or objects to the changes.
	must not violate the addition, these chang allowable in the open Changes can be ma	terms of an operating permit, the ges, which <u>add new equipment,</u> or rating permit or result in an incre	e APCA, the Clean Ai can not result in emise eased ambient air qu epartment's receipt o	ical changes of minor significance ir Act or regulations thereunder. In sion increases above the emissions ality impact for an air contaminant. f a written unless the Department
B.	flow diagram, material dat This RFD covers a 5-day feet of screen at the Harle	a safety sheet and any other per	tinent information - att m one (2-inch diamete will use a 5 HP blowe	r and capture VOCs using vapor
C.	Facility Name		Plant Name:	Motor Company Operations Inc
	Harley-Davidson Motor Co		Harley-Davidson	Motor Company Operations, Inc.
D.	Mailing Address: 1425 Ec	len Road, York, PA 17402		
E.	Contact Person: Sharon Fisher		Titl Env	e: vironmental Manager
F.	Telephone Number:	<u> </u>	G.	Federal ID #
	717-852-6544			39-1972792-1
Н.	Current Operating Permit 67-05032	No., if any:	Ι.	Date of Installation: April 16, 2007
J.	Location of Source(s):	anna dalla manare iliai anna cada anna anna	a <u>.</u>	•
	Mobile soil vapor extraction	on pilot test in the northwest corn	er of the west parking	lot (Area B).
К.	Municipality/Township: Springettsbury Township		Co Yoi	unty rk
	. Ce	belief formed after reasonable	inquiry, the statement	A. § 4904 and 35 P.S. § 4009(b)(2), ts and information contained in this
(Sig	gned) <u>Sharon R</u>	Tipler	Date: <u>03-20</u>	0-07
Nar	me (typed) <u>Sharon Fisher</u>		Title: Environmenta	al Manager
L	La Passe - Description			

RECEIVED

;

MAR 310 2007

2700-PM-AQ0017 7/2001

Pollutant(s)	Emissions (lbs/hr)	Emissions (tons/year)
Trichloroethylene (TCE)	0.0796 lbs/hr	0.0043 tons/year
Tetrachloroethylene (PCE)	0.159 lbs/hr	0.0086 tons/year
· · · · · · · · · · · · · · · · · · ·		

M. List all source(s) exempted from permitting within last five years. This listing should include sources that were exempted under a Request for Determination for Plan Approval/Operating Permit (RFD).

Source	Date Installed	Department Determination, if any
Nickel/Chrome Plating - change in the nickel plating process to include an added nickel plating bath.	2005	Exempt from Plan Approval and Operating Permit Requirements
Portable air cleaners installation in the Paint Finesse Area (silk screen).	2004	Exempt from Plan Approval and Operating Permit Requirements
Groundwater Treatment System - use of granular activated carbon (GAC) filter system along with PTAS as primary control devices.	2004	Exempt from Plan Approval and Operating Permit Requirements
Bldg. 4 Five Stage Phosphatizer - The washing system emissions from the unit exhaust to the building exterior.	to be installed 2006	Exempt from Plan Approval and Operating Permit Requirements
Bldg. 3 Powder Paint System - Color powder paint system for upcoming bike models.	to be installed 2007	Exempt from Plan Approval and Operating Permit Requirements
Bldg. 3 Dylan Project - Adhesive Heat Cure Operation	to be installed 2007	Exempt from Plan Approval and Operating Permit Requirements

N. Will the construction or modification of the source covered under this RFD increase emissions from other sources at the facility?

If yes, describe and quantify emission increases on separate sheet(s).

Will the construction or modification of the source be subject to 25 Pa. Code, Subchapter E, New Source Review (NSR) requirements or Prevention of Significant Deterioration (PSD) of Air Quality regulations?

🗌 Yes 🛛 No

eviewed By: Grang Lenz
eviewed By: U CCT g Gen C
127.14(a)(1)-(9)).
de § 127.443 (a)).
red to submit a plan approval and/or operating
asmin Neidlinger
Name and Title Nief, Fac. Permitting
C

RECEIVED

MAR 3 0 2007

- 2 -

HARLEY-DAVIDSON SVE PILOT STUDY

The soil vapor extraction (SVE) pilot study in Area B will include use of a single, dual-level SVE extraction well, which will pull vapors from a shallow (2-11 feet deep) silt layer as well as from a deeper (12-20 feet deep) gravelly silty sand layer. Vacuum will be generated using a single 5 horsepower (Hp) regenerative blower. The exhaust will be directed through a series of vapor-phase carbon canisters for removal of extracted VOCs. A series of four dual level SVE monitoring locations will be installed with sensor depths similar to the depths of the screens in the multi-level pilot vapor extraction well. The monitoring will be conducted along two perpendicular lines at distances of 5 and 15 feet from the pilot vapor extraction well. A step-test will be performed on both zones of the extraction well, with three vacuum flow rates (50 percent, 75 percent, and 100 percent blower capacity) to determine the efficiency of each extraction well zone at the various gas flow rates. The pilot study step test is designed to run for 2 hours at each flow rate and from each of the two extraction well zones, for a total of 12 hours. The pilot study step test results will be used to select an optimum flow rate for each zone for a longer pilot study test. A continuous SVE pilot study test run will be implemented for each zone of 48 hours each. Vacuum readings from each of the soil vapor monitoring points, along with air velocity and PID readings from the discharge lines will be used to evaluate the effectiveness of the pilot study and make recommendations for full scale implementation.

Prior to the drilling and construction of the SVE wells, the depth to groundwater will be determined within Area B. One temporary groundwater piezometer will be installed just outside the capped part of Area B. This temporary well will be installed using a Geoprobe® and will consist of a temporary polyvinyl chloride (PVC) screen and riser installed at least 3 feet into saturated materials. This temporary well will be left in place throughout the construction of the SVE wells and throughout the duration of the SVE pilot study in order to monitor the depth to groundwater.

Figure 1 shows the location of the site, while Figure 2 shows the configuration of the proposed SVE extraction and monitoring wells on the property. Figure 3 shows the construction details of the proposed SVE extraction wells and Figure 4 shows the construction details of monitoring wells. Figure 5 shows the SVE connection details.

Harley-Davidson Motor Company Operatio	ns, Inc.		
Area B SVE Pilot Test Projected Recoverable Trichloroethylene (
Projected Recoverable Inchloroethylene (
Assumptions:			
1. Average concentration of TCE in the soll is	40 mg/kg.		
Pilot test duration is 96 hours + 12 hour ste			
Radius of influence from the extraction wel			
4. Total screen length is 15 feet (10 feet in sil	t section and 5	feet in silty sar	nd section).
1. Calculate the total volume of treatable in	npacted soil b	ased on estim	ated ROI (as a cylinder):
	(π ²)(L) = soil	volume (cu ft)	
Estimated ROI =	15	ft	
$\pi r^2 =$	706.5	ft ²	
L (screen length) =	15	ft	
Vol of soil =	10598	ft ³	
2. Assume 1 cubic foot of soil = 90lbs. Cor	wert soil volur	ne (cubic feet) to mass (kilograms):
(Vol of soil)(90lbs)(0.45 kg	g) = soil mass	(kilograms)
Vol of soil =	1.06E+04	ft ³	
1 cu ft of soil =	90	lbs	
1 lb =	0.45	kg	
soil mass =	4.29E+05	kg	
3. Calculate mass (mg/kg) of TCE based or	n soil mass an	d average cor	ncentration:
(soil mass)(ave. T	CE concentration	on)(0.001g) = ⁻	TCE mass (grams)
soil mass =	4.29E+05	kg	
ave. TCE Concentration =	40	mg/kg	
1 mg =	0.001	g	
TCE mass =	1.72E+04	g	
4. Assume best case scenario of 25% reco	very over 96 h	our pilot test	+ 12 hour step test:
TCE Recoverable Mass =	4.29E+03	g	
TCE Recoverable Mass =	<u>8.6</u>	lbs	

Notes:

Harley-Davidson Motor Company, 1425 Eden Road, York, PA 17402 717/848-1177

AIR CUALITY

March 20, 2007

CERTIFIED MAIL NO. 7004 2510 0002 4456 7209

Mr. Gary Lenz Air Pollution Control Engineer Pennsylvania Department of Environmental Protection South Central Regional Office 909 Elmerton Avenue Harrisburg, PA 17110-8200

Re: RFD – Harley-Davidson Motor Company Operations, Inc. Title V Permit No. 67-05032 Area B Soil Vapor Extraction Pilot Study

Dear Mr. Lenz:

Harley-Davidson Motor Company Operations, Inc. (Harley-Davidson) is submitting the enclosed Request for Determination of Requirement for Plan Approval/Operating Permit (RFD) associated with a soil vapor extraction (SVE) pilot study. The area of study is located along Harley-Davidson's western property boundary, in an area identified as Area B. This work is being done as part of ongoing Remedial Investigation efforts under the One Cleanup program facilitated by PADEP and EPA. The enclosed RFD includes capture of VOCs using vapor phase carbon adsorbers.

We trust you will find everything in order and completed to the satisfaction of the requirements of the Department. If you have any questions or require additional information, please contact me at 852-6544, at your convenience.

Sincerely yours, HARLEY-DAVIDSON MOTOR COMPANY OPERATIONS, INC.

RNika

Sharon R. Fisher Environmental Manager Plant Engineering Department

Enclosures cc: Mr. Jay Peterson – PADEP York District Office Mr. Roger Myers – SAIC

APPENDIX B

Soil Boring and Well Construction Logs

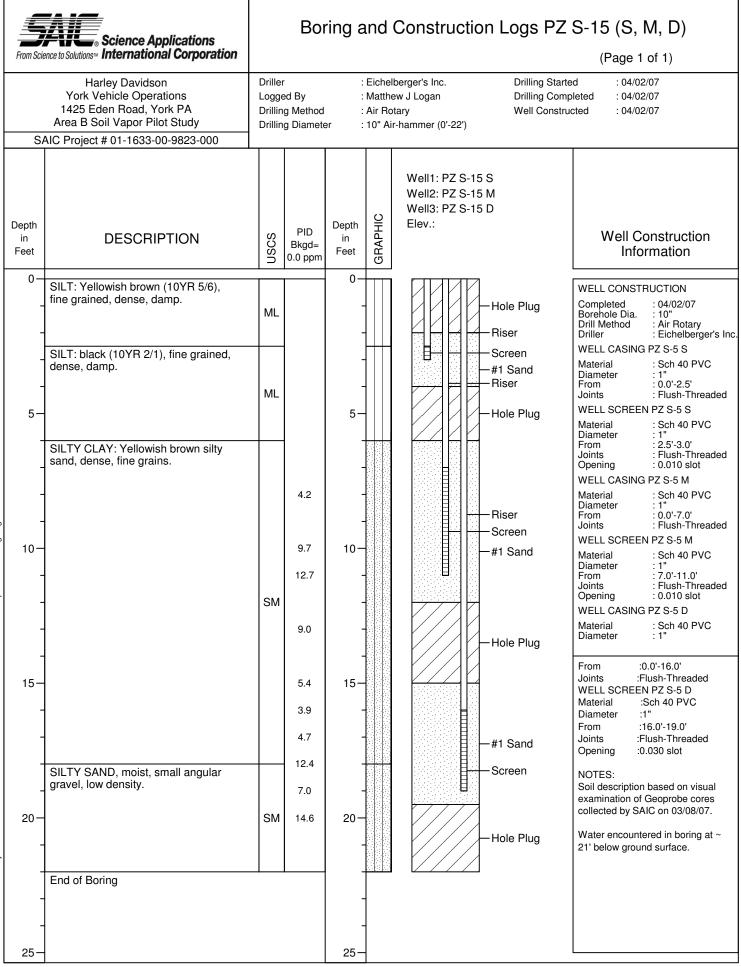
	Science Applications					LOG OF B	ORING EW-1
From So	Harley Davidson Harley Davidson Area B Soil Vapor Pilot Study Drilling Bi Drilling Bi			d	: Andrev : Emily \ : Geopre	v Haselhoff Wade	(Page 1 of 1) and Suppate Started : 3/8/07 Date Completed : 3/8/07 Well Construction : Not Applicable Well Development : Not Applicable Blown/Bailed Yield : Not Applicable
Depth in Feet	DESCRIPTION		% Recovery	PID (ppm)	GRAPHIC	Soil Sample I.D.	Notes
0	Yellowish Brown Silt, 10YR 5/6, fine grain dense, damp Black, 10YR 2/1, fine grained, dense, dan		75				BACKFILL (DRILL CUTTINGS) From : 0' to 20.0' BGS PID readings taken every foot. The reading was zero if the left blank. PPM-parts per million
4 6 	Yellowish Brown, 10YR 5/6, silt, fine grain dense, damp	١,	75	6.7			BGS-below grade surface
8			100	15.1 15.7 10.7		PZ-S 5 smd 9.5-10	
12			100	1.6 8.1 6.9 3.5		PZ-S 5 smd 13-13.5 PZ-S 5 smd	
- 16 - - - - 18 - -	Silty Sand, moist small angular gravel, low density	v	75	1.5		14-14.5	
- 20- - - 22-	<15% angular gravel End of Boring			4.1			

06-12-2007 H:Jobs/Harley/Eden Road/Area B - SVE Pilot Test/Area B SVE SOWArea B Soil Vapor-Soil Borning Logs/EW-1.bor

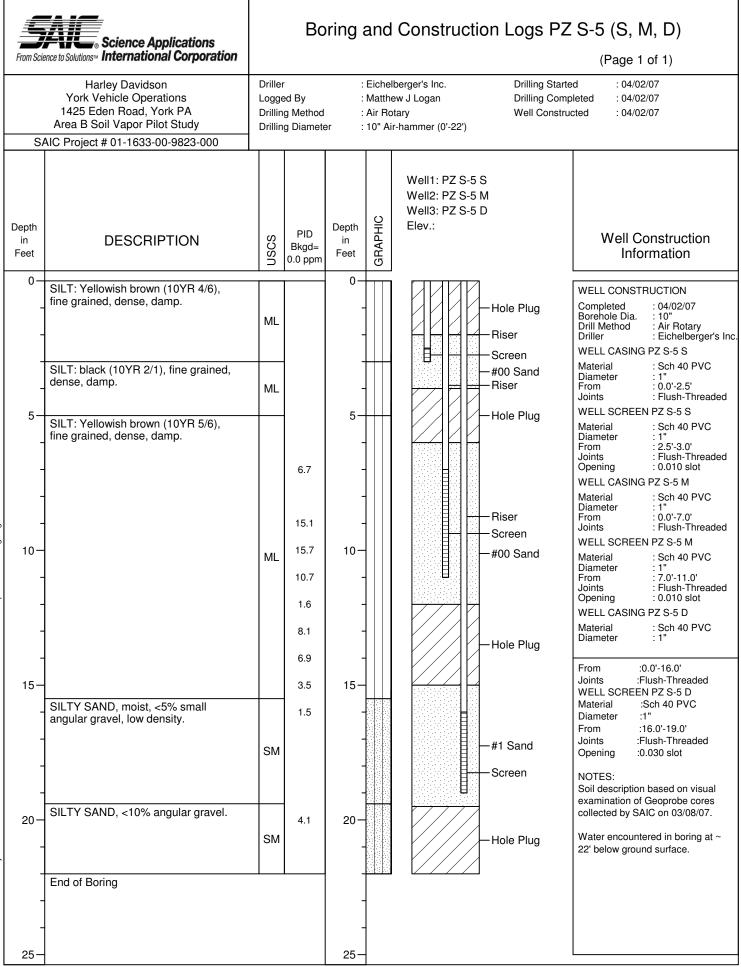
From Scie	Science Applications ence to Solutions International Corporation		Вс	oring	and	d Construction Logs	EW-1 (S and D) (Page 1 of 1)
S/	Harley Davidson York Vehicle Operations 1425 Eden Road, York PA Area B Soil Vapor Pilot Study AIC Project # 01-1633-00-9823-000			:	Matth Air R		completed : 04/02/07
Depth in Feet	DESCRIPTION	NSCS	PID Bkgd= 0.0 ppm	Depth in Feet	GRAPHIC	Well1: EW-1 S Well2: EW-1 D Elev.:	Well Construction Information
0	SILT: Yellowish brown (10YR 5/6), fine grained, dense, damp.	ML		-0		Hole Plug	WELL CONSTRUCTION Completed : 04/02/07 Borehole Dia. : 10" Drill Method : Air Rotary Driller : Eichelberger's Inc. WELL CASING EW-1 S
	SILT: black (10YR 2/1), fine grained, dense, damp.	ML		- 5-			Material : Sch 40 PVC Diameter : 2" From : 0.0'-3.0' Joints : Flush-Threaded WELL SCREEN EW-1 S
	SILT: Yellowish brown (10YR 5/6), fine grain, dense, damp.	ML	6.7 15.1 15.7 10.7 1.6	- - - - 10- - -		Screen Riser —#00 Sand	Material: Sch 40 PVCDiameter: 2"From: 3.0'-13.0'Joints: Flush-ThreadedOpening: 0.010 slotWELL CASING EW-1 DMaterial: Sch 40 PVCDiameter: 2"From: 0.0'-16.0'Joints: Flush-ThreadedWELL SCREEN EW-1 DMaterial: Sch 40 PVCDiameter: 2"From: 16.0'-19.0'Joints: Flush-ThreadedOpening: 0.030 slot
- - - - - - - - - - - - - - - - - - -	SILTY SAND: moist, small angular gravel, low density.		8.1 6.9 3.5 1.5	- - 15- -		Hole Plug	Soil description based on visual examination of Geoprobe cores collected by SAIC on 03/08/07. Water encountered in boring at ~22' below ground surface.
-	g.a.o., for activity.	SM		-		-#1 Sand Screen	
20-	<15% angular gravel.	SM	4.1	20-		Hole Plug	
-	End of Boring		_	-		· · ·	
25-				25-			

06-12-2007 H:Uobs/Harley/Eden Road/Area B - SVE Pilot Test/Area B SVE SOW/Area B Soil Vapor-Soil Borning Logs/EW-1 construction.bo

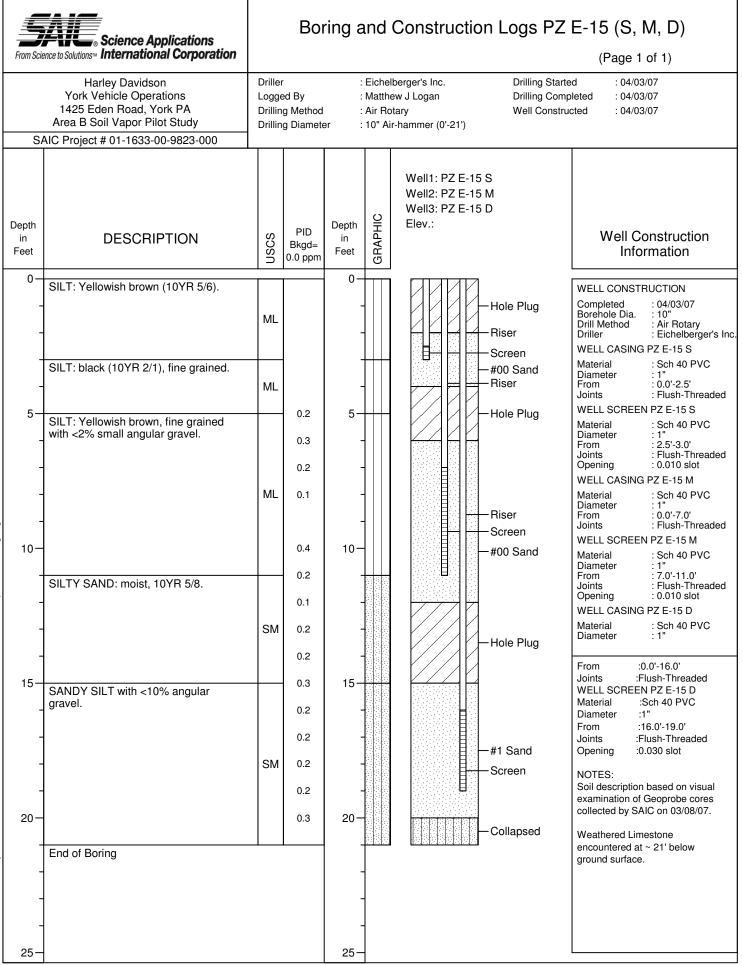
From Sc	Science Applications eience to Solutions [®] International Corporation						(Page 1 of 1)
Harley Davidson Area B Soil Vapor Pilot Study		Drilling Co Drilled By Logged B Drilling Me Drilling Bit	y ethod	b	: Andrev : Emily ' : Geopr	w Haselhoff Wade	and Su pat ye Started Date Completed Well Construction Well Development Blown/Bailed Yield	: 3/8/07 : 3/8/07 : Not Applicable : Not Applicable : Not Applicable
epth in eet	DESCRIPTION		% Recovery	PID (ppm)	GRAPHIC	Soil Sample I.D.	N	otes
0	Yellowish Brown Silt, 10YR 5/6, fine grain dense, damp	ied,					BACKFILL (DRILL CUTTIN From	IGS) 0' to 20.0' BGS
2			75				PID readings taken every for The reading was zero if the	oot. Heft blank.
- 4- -	Black, 10YR 2/1, fine grained, dense, dar	np					PPM-parts per million BGS-below grade surface	
6 -	Yellowish Brown, 10YR 5/6, silt, fine grair dense, damp	۱,	75	6.7				
- 8				15.1		PZ-S 5 smd		
- 10 -			100	15.7 10.7		9.5-10		
- - 12 -				1.6				
- - 14 — -			100	8.1 6.9		PZ-S 5 smd 13-13.5		
- - 16—	Silty Sand, moist small angular gravel, lov	N		3.5 1.5		PZ-S 5 smd 14-14.5		
- - 18—	density		75					
- - 20 —	<15% angular gravel End of Boring			4.1				

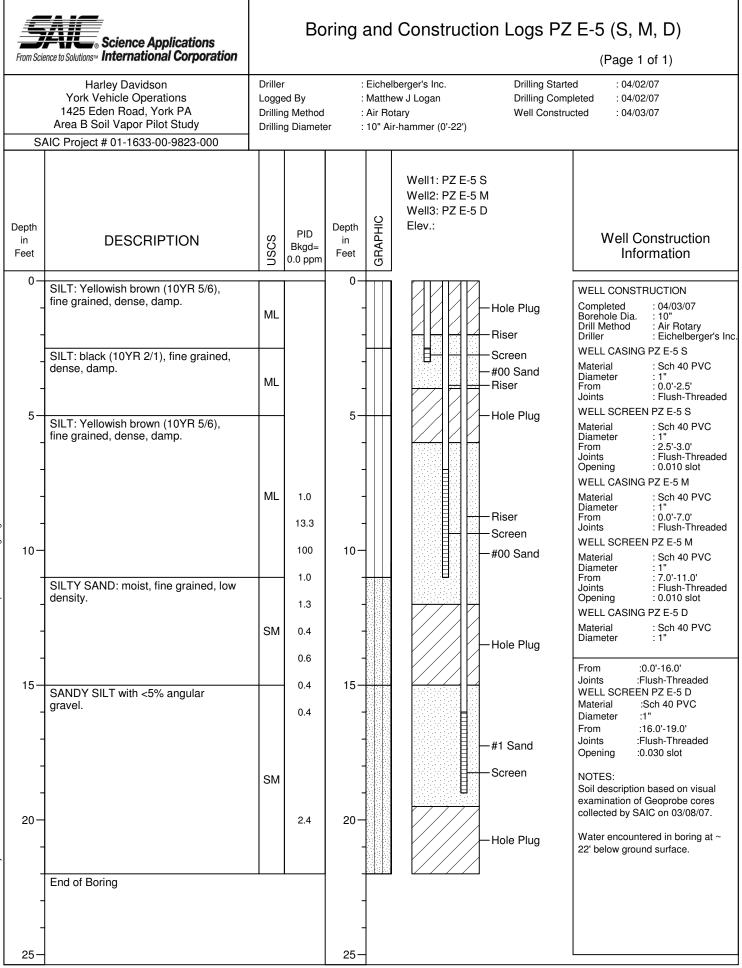

From Sc	Science Applications ience to Solutions International Corporation						(1	Page 1 of 1)
	Harley Davidson Davidson La Area B Soil Vapor Pilot Study La Davidson Davidson David		y etho		: Andrev : Emily \ : Geopre	v Haselhoff Vade	and Su pay e Started Date Completed Well Construction Well Development Blown/Bailed Yield	: 3/8/07 : 3/8/07 : Not Applicable : Not Applicable : Not Applicable
Depth in Feet	DESCRIPTION		% Recovery	PID (ppm)	GRAPHIC	Soil Sample I.D.	Να	otes
0 — - 2 — -	Yellowish Brown Silt, 10YR 5/6, fine grain dense, damp		95				BACKFILL (DRILL CUTTIN From : PID readings taken every fo The reading was zero if the	0' to 22.6' BGS
- - 4- -	Black, 10YR 2/1, fine grained, dense, dar Yellowish Brown, 10YR 5/6, silt, fine grain dense, damp Yellowish Brown, 10YR 5/8, clayey silt, de moist	١,					PPM-parts per million BGS-below grade surface	
- - 6 - -			100					
- 8_ - -				1.3				
10- - - 12-	Yellowish Brown Silty Sand, low density		100					
			100	0.9				
- - 16-								
- - 18- - -	Light gray, dry, fine grained, low density		60	1.2 2.4				
20-	Dark Yellowish Brown, moist, <15% angu gravel		15	0.6				
22-								

From Sc	Science Applications						(Page 1 of 1)
Harley Davidson Area B Soil Vapor Pilot Study		Drilling Company Drilled By Logged By Drilling Method Drilling Bit Diamete		: Environmental Equipme : Andrew Haselhoff : Emily Wade : Geoprobe er : 2 1/4"		and Su pay e Started Date Completed Well Construction Well Development Blown/Bailed Yield	: 3/8/07 : 3/8/07 : Not Applicable : Not Applicable : Not Applicable	
epth in Feet	DESCRIPTION		% Recovery	PID (ppm)	GRAPHIC	Soil Sample I.D.	N	otes
0-	Yellowish Brown Silt, 10YR 5/6						BACKFILL (DRILL CUTTIN	IGS) 0' to 20.0' BGS
- 2- -			88				PID readings taken every for The reading was zero if the	pot.
- - 4_	Black, 10YR 2/1, fine grained						PPM-parts per million BGS-below grade surface	
6	Yellowish Brown Silt, fine grained with <2 small angular gravel		100	0.2 0.3 0.2				
				0.1				
- - 10			100	0.4		PZ-E 15 smd 9-9.5		
- - 12-	Silty Sand, moist, 10YR 5/8			0.2				
- - 14 –			75	0.2 0.2				
- - 16- -	Sandy silt with <10% angular gravel			0.3		PZ-E 15 smd		
- - 18-			63	0.2 0.2				
- - 20	End of Boring			0.2 0.3		PZ-E 15 smd 19.5-20		


From Sc.						(Page 1 of 1)		
Harley Davidson Area B Soil Vapor Pilot Study		Drilled By Logged By Drilling Me	Drilling Company Drilled By Logged By Drilling Method Drilling Bit Diameter			nmental Equipment w Haselhoff Wade obe	at and Supply Started : 3/8/07 Date Completed : 3/8/07 Well Construction : Not Applicable Well Development : Not Applicable Blown/Bailed Yield : Not Applicable	
epth in ⁻ eet	DESCRIPTION		% Recovery	PID (ppm)	GRAPHIC	Soil Sample I.D.	N	otes
0 - - 2	Yellowish Brown Silt, 10YR 5/6, fine grain dense, damp	ned,	88				PID readings taken every for	0' to 20.0' BGS
2 - - - 4 -	Black, 10YR 2/1, fine grained, dense, dar	np	00				The reading was zero if the PPM-parts per million BGS-below grade surface	left blank.
- - - 6 - -	Yellowish Brown, 10YR 5/6, silt, fine grain dense, damp		100					
- - 8_ -		-		1.0 13.3		PZ-E 5 smd		
- 10- -			100	0.4		9-9.5		
- 12- -	Silty Sand, moist, fine grained, low densi	ty -		1.3 0.4				
- 14 — -			25	0.6 0.4		PZ-E 5 smd		
- 16- - - -	Sandy silt with <5% angular gravel			0.4				
18			25			PZ-E 5 smd		
20	End of Boring	I		-2.4	u1 -11 -11 -1.	19.5-20		

in Feet DESCRIPTION Sol Sol Sol Sol Sol Sample I.D. Notes 0 Vellowish Brown Silt, 10YR 5/6, fine grained, dense 88 Fine grained, dense, damp 88 Fine addings taken every tool. The reading was zero if the left blank. 4 6 SILTY CLAY, Vellowish Brown Silty Sand, dense, fine grains 75 42 PZS 15 and 10 100 5.4 10.5 9.0 PZS 15 and 14 5.4 3.9 4.7 PZS 15 and 18 Silty Sand, moist small angular gravel, low 75 12.4 18-18.5 70 75 12.4 18-18.5	From Se	Science Applications						NG PZ S-15 SN	Page 1 of 1)
0 Vellowish Brown Silt, 10YR 5/6, fine grained, dense, damp 88 Black, 10YR 2/1, fine grained, dense, damp 4 Black, 10YR 2/1, fine grained, dense, damp 88 From : 0' to 20.0' BGS 4 Black, 10YR 2/1, fine grained, dense, damp 75 PM-parts per million BGS-below grade surface 6 SILTY CLAY, Yellowish Brown Silty Sand, dense, fine grains 75 4.2 PZ-S 15 smd 10 10 5.4 11.5-12 9.0 11.5-12 14 100 5.4 11.5-12 9.0 14 75 75 12.7 PZ-S 15 smd 18 Silty Sand, moist small angular gravel, low 75 12.4 18-8.5 70 PZ-S 15 smd 18-8.5 PZ-S 15 smd		Harley Davidson Area B Soil Vapor Pilot Study	Drilled By Logged B Drilling M	y By lethoo	d	: Andrev : Emily V : Geopre	w Haselhoff Wade	Date Completed Well Construction Well Development	: 3/8/07 : Not Applicable : Not Applicable
Vellowish Brown Silt, 10YH 5/6, line grained, dense, damp B8 Back, 10YH 2/1, fine grained, dense, damp Back, 10YH 2/1, fine grained, dense, damp 4 Black, 10YH 2/1, fine grained, dense, damp 75 PID readings taken every foot. The reading was zero if the left blank. 6 SILTY CLAY, Yellowish Brown Silty Sand, dense, fine grains 75 PZ-S 15 smd 10 100 8.7 11.5 12 14 000 5.4 11.5 12 14 100 5.4 2.9 18 Silty Sand, moist small angular gravel, low 75 12.4 18-8.5 70 PZ-S 15 smd 18-8.5 19.5 0	in Feet	DESCRIPTION		% Recovery	PID (ppm)	GRAPHIC	Soil Sample I.D.	N	otes
4 75 75 6 SILTY CLAY, Yellowish Brown Silty Sand, dense, fine grains 75 10 4.2 10 9.7 12 100 14 9.0 14 100 16 3.9 18 Silty Sand, moist small angular gravel, low 75 7.0 72 18-18.5 70 PZ-S 15 smd	-	dense		88				From PID readings taken every f	: 0' to 20.0' BGS
SIL 1Y CLAY, Yellowish Brown Silty Sand, dense, fine grains 4.2 10 4.2 10 9.7 12 100 9.7 14 9.0 14 5.4 16 5.4 18 Silty Sand, moist small angular gravel, low density 75 12.4 18 Silty Sand, moist small angular gravel, low 75 12.4 14 10.5 20	- - 4 -	Black, 10YR 2/1, fine grained, dense, dar	np					PPM-parts per million BGS-below grade surface	
10 100 9.7 12 12.7 PZ-S 15 smd 14 9.0 11.5-12 16 5.4 3.9 18 Silty Sand, moist small angular gravel, low density 75 12.4 18-18.5 70 PZ-S 15 smd 18-18.5 70 PZ-S 15 smd		SILTY CLAY, Yellowish Brown Silty Sand dense, fine grains	3		42				
12 - 9.0 11.5-12 14 - 9.0 5.4 - 16 - - - - 16 - - - - 18 Silty Sand, moist small angular gravel, low 75 12.4 18-18.5 7.0 PZ-S 15 smd - - - 20 - - - - -	-			100	9.7				
14 9.0 9.0 16 5.4 16 3.9 18 Silty Sand, moist small angular gravel, low density 75 12.4 18-18.5 7.0 PZ-S 15 smd 14.6 19.520	-				12.7		PZ-S 15 smd		
16 5.4 16 3.9 18 3.9 Silty Sand, moist small angular gravel, low density 75 12.4 18-18.5 70 PZ-S 15 smd 14.6 10.5.20	- - -						11.5-12		
18 Silty Sand, moist small angular gravel, low 75 12.4 18-18.5 20 14.6 10.5.20					5.4				
- - 7.0 PZ-S 15 smd - - - 10.5.20	- - - 18—	Silty Sand, moist small angular gravel, log	v						
Event of Devine	- - - 20-	density	•		7.0 14.6		PZ-S 15 smd		
End of Boring	-	End of Boring							


06-12-2007 H:\Jobs\Harley\Eden Road\Area B - SVE Pilot Test\Area B SVE SOWArea B Soil Vapor-Soil Borning Logs\PZ S-15smd.bo



From S	Science Applications				LO	G OF BOR	ING PZ S-5 SM	D Page 1 of 1)
	Harley Davidson Drill Area B Soil Vapor Pilot Study Log Drill			d	: Andrev : Emily V : Geopro	v Haselhoff Vade	and Su ppy Started Date Completed Well Construction Well Development Blown/Bailed Yield	: 3/8/07 : 3/8/07 : Not Applicable : Not Applicable : Not Applicable
Depth in Feet	DESCRIPTION		% Recovery	PID (ppm)	GRAPHIC	Soil Sample I.D.	N	otes
2-	Yellowish Brown Silt, 10YR 4/6, fine grain dense, damp Black, 10YR 2/1, fine grained, dense, dar		75				BACKFILL (DRILL CUTTIN From : PID readings taken every for The reading was zero if the PPM-parts per million BGS-below grade surface	0' to 20.0' BGS
6 -	Yellowish Brown, 10YR 5/6, silt, fine grair dense, damp	ied,	75	6.7				
6 - 10 - 10 - 10 - 12 - 10 - 12 - 14 - 16 - 18 - 18 - 20 - 22 - 20 - 22 - 20			100	15.1 15.7 10.7 1.6		PZ-S 5 smd 9.5-10		
14-	Silty Sand, moist, small angular gravel, <		100	8.1 6.9 3.5		PZ-S 5 smd 13-13.5 PZ-S 5 smd		
	low density		75	1.5		14-14.5		
20-	<10% angular gravel End of Boring			L _{4.1}				

06-12-2007 H:Jubs/Harley/Eden Road/Area B - SVE Pilot Test/Area B SVE SOW/Area B Soil Vapor-Soil Borning Logs/PZ S-5construction.bo

06-12-2007 Ht;Jobs/Harley/Eden Road/Area B - SVE Pilot Test;Area B SVE SOW/Area B Soil Vapor-Soil Borning Logs/PZ E-5construction.bo

From Scie	Science Applications International Corporation		Во	ring a	and	Construction Logs	VEW-1 (S and D) (Page 1 of 1)
	1425 Eden Road, York PA Drilli Area B Soil Vapor Pilot Study Drilli		r ed By Ig Method Ig Diamete	:	Matth Air Ro		Started : 04/02/07 Completed : 04/02/07 Instructed : 04/02/07
S/	AIC Project # 01-1633-00-9823-000						
Depth in Feet	DESCRIPTION	NSCS	PID Bkgd= 0.0 ppm	Depth in Feet	GRAPHIC	Well1: EW-1 S Well2: EW-1 D Elev.:	Well Construction Information
0	SILT: Yellowish brown (10YR 5/6), fine grained, dense, damp.	ML		-0		Hole Plug	WELL CONSTRUCTION Completed : 04/02/07 Borehole Dia. : 10" Drill Method : Air Rotary Driller : Eichelberger's Inc. WELL CASING EW-1 S
-	SILT: black (10YR 2/1), fine grained, dense, damp.	ML	-	-			Material : Sch 40 PVC Diameter : 2" From : 0.0'-3.0' Joints : Flush-Threaded WELL SCREEN EW-1 S
5	SILT: Yellowish brown (10YR 5/6), fine grain, dense, damp.	ML	6.7 15.1 15.7 10.7 1.6 8.1	5 - - - 10 - - - -			Material: Sch 40 PVCDiameter: 2"From: 3.0'-13.0'Joints: Flush-ThreadedOpening: 0.010 slotWELL CASING EW-1 DMaterial: Sch 40 PVCDiameter: 2"From: 0.0'-16.0'Joints: Flush-ThreadedWELL SCREEN EW-1 DMaterial: Sch 40 PVCDiameter: 2"From: 16.0'-19.0'Joints: Flush-ThreadedOpening: 0.030 slotNOTES:Soil description based on visual
- 15— -	SILTY SAND: moist, small angular		6.9 3.5 1.5	- 15–		Hole Plug	examination of Geoprobe cores collected by SAIC on 03/08/07. Water encountered in boring at ~22' below ground surface.
- -	gravel, low density.	SM		-		-#1 Sand Screen	
20-	<15% angular gravel.	SM	4.1	20-		Hole Plug	
	End of Boring			_			
-				-			
25-				25-			

APPENDIX C

Photographic Log of Site Work

Appendix C – Photographs

Photograph 1 – Temporary well location, which remains following the project.

Photograph 2 – Air rotary drilling rig drilling monitoring well cluster PZ-E15.

Photograph 3 – 5 Horsepower blower and vacuum gauges.

Photograph 4 – 50 KW generator and light stand.

Photograph 5 – Knockout drum and connections.

Photograph 6 – Granular activated carbon drums and connections

Photograph 7 – SVE connections to blower and flow measurement port.

Photograph 8 – SVE extraction well sampling ports and vacuum flow measurement.

Photograph 9 – SVE monitoring well connections.

Photograph 10 – Extracting vapors from SVE well using a syringe.

Photograph 11 – Filling evacuated vial with SVE vapors.

Photograph 12 – Completed SVE wells with drive-over covers.

APPENDIX D

Analytical Reports

Appendix D Analytical Report Summary

Severn Trent Laboratory Data Package – C7C090301 (soil samples):

- PZ-S15 SMD, 11.5-12'
- PZ-S15 SMD, 18-18.5'
- PZ-S15 SMD, 19.5-20'
- PZ-S5 SMD, 9.5-10'
- PZ-S5 SMD, 13-13.5'
- PZ-S5 SMD, 14-14.5'
- EW-1, 6.5-7'
- EW-1, 14-14.5'
- EW-1, 15.5-16'
- PZ-E5 SMD, 9-9.5'
- PZ-E5 SMD, 14-14.5'
- PZ-E5 SMD, 19.5-20'
- PZ-E15 SMD, 9-9.5'
- PZ-E15 SMD, 15-15.5'
- PZ-E15 SMD, 19.5-20'
- Trip Blank

VaporTech Laboratory Data Package May 1, 2007 (air samples):

- VEW-1 (S) A
- VEW-1 (S) B
- VEW-1 (D) A
- VEW-1 (D) B
- Continuing Calibration Check
- Laboratory Blank

PRELIMINARY DATA SUMMARY

_____ The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user.

	SAI	2			PAGE
Lot #: C7C090301	SAIC Harley	y Davidson		Date Reported:	3/21/07
	Project Numbe	er: SAIC HE)		
		REPORTIN	IG	ANALYTICAL	
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Client Sample ID: PZ-S15 SMD 11					
Sample #: 001 Date Sampled:	03/08/07 09	:44 Date R	leceived: 03	3/09/07 Matrix:	SOLID
Volatile Organics by GC/MS					Reviewed
2-Butanone	ND	260	ug/kg	SW846 8260B	
1,4-Dioxane	ND	51000	ug/kg	SW846 8260B	
cis-1,2-Dichloroethene	37 J	260	ug/kg	SW846 8260B	
Acrolein	ND	5100	ug/kg	SW846 8260B	
Acrylonitrile	ND	5100	ug/kg	SW846 8260B	
Benzene	ND	260	ug/kg	SW846 8260B	
Bromodichloromethane	ND	260	ug/kg	SW846 8260B	
Bromoform	ND	260	ug/kg	SW846 8260B	
Bromomethane	ND	260	ug/kg	SW846 8260B	
Carbon tetrachloride	ND	260	ug/kg	SW846 8260B	
Chlorobenzene	ND	260	ug/kg	SW846 8260B	
Chloroethane	ND	260	ug/kg	SW846 8260B	
2-Chloroethyl vinyl ether	ND	510	ug/kg	SW846 8260B	
Chloroform	ND	260	ug/kg	SW846 8260B	
Chloromethane	ND	260	ug/kg	SW846 8260B	
Dibromochloromethane	ND	260	ug/kg	SW846 8260B	
1,1-Dichloroethane	ND	260	ug/kg	SW846 8260B	
1,2-Dichloroethane	ND	260	ug/kg	SW846 8260B	
1,1-Dichloroethene	ND	260	ug/kg	SW846 8260B	
trans-1,2-Dichloroethene	ND	260	ug/kg	SW846 8260B	
1,2-Dichloropropane	ND	260	ug/kg	SW846 8260B	
cis-1,3-Dichloropropene	ND	260	ug/kg	SW846 8260B	
trans-1,3-Dichloropropene	ND	260	ug/kg	SW846 8260B	
Ethylbenzene	ND	260	ug/kg	SW846 8260B	
Methylene chloride	63 J	260	ug/kg	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	260	ug/kg	SW846 8260B	
Tetrachloroethene	690	260	ug/kg	SW846 8260B	
Toluene	ND	260	ug/kg	SW846 8260B	
1,1,1-Trichloroethane	ND	260	ug/kg	SW846 8260B	
1,1,2-Trichloroethane	ND	260	ug/kg	SW846 8260B	
Trichloroethene	1300	260	ug/kg	SW846 8260B	
Vinyl chloride	ND	260	ug/kg	SW846 8260B	

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

PRELIMINARY DATA SUMMARY

ot #: C7C090301	SAIC SAIC Harley Davidson Project Number: SAIC HD			HD	Date Reported:			PAGE 2 3/21/07
PARAMETER	RESULT		REPORTING LIMIT UNITS		ANALYTICAL <u>METHOD</u>			
Client Sample ID: PZ-S15 SMD 11	.5-12							
Sample #: 001 Date Sampled:		09:44	Date	Received:	03/09/	07	Matrix:	SOLID
Inorganic Analysis Total Residue as	82.8	1	0	90	М	ICAWW	160.3	Reviewed MOD
Percent Solids								
Client Sample ID: PZ-S15 SMD 18	.0-18.5							
Sample #: 002 Date Sampled:	03/08/07	10:00	Date	Received:	03/09/	07	Matrix:	SOLID
Volatile Organics by GC/MS								Reviewed
2-Butanone	ND	3	.9	ug/kg	2	SW846	8260B	
1,4-Dioxane	ND	7	90	ug/kg	S	SW846	8260B	
cis-1,2-Dichloroethene	6.0	3	.9	ug/kg	5	SW846	8260B	
Acrolein	ND	7	9	ug/kg	2	SW846	8260B	
Acrylonitrile	ND	7	9	ug/kg	2	SW846	8260B	
Benzene	ND	3	.9	ug/kg	2	SW846	8260B	
Bromodichloromethane	ND	3	.9	ug/kg	2	SW846	8260B	
Bromoform	ND	3	.9	ug/kg	2	SW846	8260B	
Bromomethane	ND	3	.9	ug/kg	2	SW846	8260B	
Carbon tetrachloride	ND	3	.9	ug/kg	2	SW846	8260B	
Chlorobenzene	ND	3	.9	ug/kg	S	SW846	8260B	
Chloroethane	ND	3	.9	ug/kg	5	SW846	8260B	
2-Chloroethyl vinyl ether	ND	7	.9	ug/kg	5	SW846	8260B	
Chloroform	ND	3	.9	ug/kg	S	SW846	8260B	
Chloromethane	ND	3	.9	ug/kg	5	SW846	8260B	
Dibromochloromethane	ND	3	.9	ug/kg	5	SW846	8260B	
1,1-Dichloroethane	ND	3	.9	ug/kg		SW846	8260B	
1,2-Dichloroethane	ND		.9	ug/kg	S	SW846	8260B	
1,1-Dichloroethene	ND	3	.9	ug/kg	S	SW846	8260B	
trans-1,2-Dichloroethene	ND	3	.9	ug/kg	5	SW846	8260B	
1,2-Dichloropropane	ND		.9	ug/kg			8260B	
cis-1,3-Dichloropropene	ND		.9	ug/kg			8260B	
trans-1,3-Dichloropropene	ND	3	.9	ug/kg	S	SW846	8260B	
Ethylbenzene	ND	3	.9	ug/kg	5	SW846	8260B	
Methylene chloride	2.2 J	3	.9	ug/kg	5	SW846	8260B	
1,1,2,2-Tetrachloroethane	ND	3	.9	ug/kg	S	SW846	8260B	
Tetrachloroethene	41	3	.9	ug/kg	5	SW846	8260B	
Toluene	ND		.9	ug/kg			8260B	
1,1,1-Trichloroethane	ND	3	.9	ug/kg	c	W846	8260B	

PRELIMINARY DATA SUMMARY

	SAI	-			PAGE	
ot #: C7C090301	SAIC Harley Davidson			Date Reported:		
I	Project Numb	er: SAIC HD				
		REPORTING		ANALYTICAL		
PARAMETER	RESULT	<u>LIMIT</u>	UNITS	METHOD		
Client Sample ID: PZ-S15 SMD 18	.0-18.5					
Sample #: 002 Date Sampled:		0:00 Date Rec	ceived: ()3/09/07 Matrix	: SOLID	
Volatile Organics by GC/MS					Reviewed	
1,1,2-Trichloroethane	ND	3.9	ug/kg	SW846 8260B		
Trichloroethene	130	3.9	ug/kg	SW846 8260B		
Vinyl chloride	ND	3.9	ug/kg	SW846 8260B		
Results and reporting limits have been adjusted for dry we	ight.					
J Estimated result. Result is less than RL.						
Inorganic Analysis					Reviewed	
Total Residue as	88.8	1.0	010	MCAWW 160.3	MOD	
Percent Solids						
Client Sample ID: PZ-S15 SMD 19 Sample #: 003 Date Sampled:		:05 Date Rec	ceived: ()3/09/07 Matrix	: SOLID	
Sample #: 003 Date Sampled:		0:05 Date Rec	ceived: ()3/09/07 Matrix		
Sample #: 003 Date Sampled: Volatile Organics by GC/MS	03/08/07 10				Reviewed	
Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone	03/08/07 10 ND	4.3	ug/kg	SW846 8260B	Reviewed	
Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane	03/08/07 10 ND ND	4.3 860	ug/kg ug/kg	SW846 8260B SW846 8260B	Reviewed	
<pre>Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene</pre>	03/08/07 10 ND ND 1.2 J	4.3 860 4.3	ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B	Reviewed	
<pre>Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein</pre>	03/08/07 10 ND ND 1.2 J ND	4.3 860 4.3 86	ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B	Reviewed	
<pre>Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile</pre>	03/08/07 10 ND 1.2 J ND ND ND	4.3 860 4.3 86 86	ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	Reviewed	
<pre>Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene</pre>	03/08/07 10 ND 1.2 J ND ND ND ND	4.3 860 4.3 86 86 4.3	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	Reviewed	
<pre>Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane</pre>	03/08/07 10 ND 1.2 J ND ND ND ND ND	4.3 860 4.3 86 86 4.3 4.3	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	Reviewed	
<pre>Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform</pre>	03/08/07 10 ND 1.2 J ND ND ND ND ND ND	4.3 860 4.3 86 4.3 4.3 4.3	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	Reviewed	
<pre>Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane</pre>	03/08/07 10 ND 1.2 J ND ND ND ND ND ND ND ND ND	4.3 860 4.3 86 4.3 4.3 4.3 4.3	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	Reviewed	
<pre>Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform</pre>	03/08/07 10 ND ND ND ND ND ND ND ND ND ND ND ND	4.3 860 4.3 86 4.3 4.3 4.3 4.3 4.3	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	Reviewed	
<pre>Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene</pre>	03/08/07 10 ND 1.2 J ND ND ND ND ND ND ND ND ND	4.3 860 4.3 86 4.3 4.3 4.3 4.3 4.3 4.3 4.3	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B	Reviewed	
Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane	03/08/07 10 ND ND ND ND ND ND ND ND ND ND ND ND ND	4.3 860 4.3 86 86 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B	Reviewed	
<pre>Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene</pre>	03/08/07 10 ND ND ND ND ND ND ND ND ND ND ND ND ND	4.3 860 4.3 86 86 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 8.6	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW8468260B	Reviewed	
Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether	03/08/07 10 ND ND ND ND ND ND ND ND ND ND ND ND ND	4.3 860 4.3 86 86 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B	Reviewed	
Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform	03/08/07 10 ND ND ND ND ND ND ND ND ND ND ND ND ND	4.3 860 4.3 86 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 8.6 4.3	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B	Reviewed	
Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane	03/08/07 10 ND ND ND ND ND ND ND ND ND ND ND ND ND	4.3 860 4.3 86 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 8.6 4.3 4.3	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B	Reviewed	
Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloromethane Dibromochloromethane	03/08/07 10 ND ND 1.2 J ND ND ND ND ND ND ND ND ND ND ND ND ND	4.3 860 4.3 86 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 8.6 4.3 8.6 4.3 4.3	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B	Reviewed	
Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane	03/08/07 10 ND ND 1.2 J ND ND ND ND ND ND ND ND ND ND ND ND ND	4.3 860 4.3 86 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 8.6 4.3 4.3 4.3 4.3	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW8468260B	Reviewed	
Sample #: 003 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane	03/08/07 10 ND ND 1.2 J ND ND ND ND ND ND ND ND ND ND ND ND ND	4.3 860 4.3 86 86 4.3 4.3 4.3 4.3 4.3 4.3 4.3 8.6 4.3 4.3 4.3 4.3 4.3 4.3 4.3	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW8468260B	Reviewed	

PRELIMINARY DATA SUMMARY

	SAI	C			PAGE	
ot #: C7C090301	SAIC Harle	y Davidson		Date Reported:	3/21/0	
	Project Number: SAIC HD			_		
		REPORTIN	IG	ANALYTICAL		
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
	F 20					
Client Sample ID: PZ-S15 SMD 19 Sample #: 003 Date Sampled:		· 05 Dato P	ogoivod: 03	2/00/07 Motrix:		
Sampre #. 005 Date Sampred.	03/08/07 10	Date K	ecerved: 03	9/09/07 Maciix.	SOLID	
Volatile Organics by GC/MS					Reviewed	
cis-1,3-Dichloropropene	ND	4.3	ug/kg	SW846 8260B		
trans-1,3-Dichloropropene	ND	4.3	ug/kg	SW846 8260B		
Ethylbenzene	ND	4.3	ug/kg	SW846 8260B		
Methylene chloride	3.5 J	4.3	ug/kg	SW846 8260B		
1,1,2,2-Tetrachloroethane	ND	4.3	ug/kg	SW846 8260B		
Tetrachloroethene	20	4.3	ug/kg	SW846 8260B		
Toluene	ND	4.3	ug/kg	SW846 8260B		
1,1,1-Trichloroethane	ND	4.3	ug/kg	SW846 8260B		
1,1,2-Trichloroethane	ND	4.3	ug/kg	SW846 8260B		
Trichloroethene	60	4.3	ug/kg	SW846 8260B		
Vinyl chloride	ND	4.3	ug/kg	SW846 8260B		
Results and reporting limits have been adjusted for dry w	eight.					
J Estimated result. Result is less than RL.						
Inorganic Analysis					Reviewed	
Total Residue as	91.6	1.0	90	MCAWW 160.3	MOD	
Percent Solids						
-		·10 Data D			· SOLID	
—		:19 Date R	eceived: 03	3/09/07 Matrix:		
-		:19 Date R	eceived: 03	8/09/07 Matrix:	Reviewed	
Sample #: 004 Date Sampled:		:19 Date R 280	eceived: 03 ug/kg	3/09/07 Matrix: SW846 8260B	Reviewed	
Sample #: 004 Date Sampled: Volatile Organics by GC/MS	03/08/07 10				Reviewed	
Sample #: 004 Date Sampled: Volatile Organics by GC/MS 2-Butanone	03/08/07 10 ND	280	ug/kg	SW846 8260B	Reviewed	
Sample #: 004 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane	03/08/07 10 ND ND	280 55000	ug/kg ug/kg	SW846 8260B SW846 8260B	Reviewed	
Sample #: 004 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene	03/08/07 10 ND ND ND	280 55000 280	ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B	Reviewed	
Sample #: 004 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein	03/08/07 10 ND ND ND ND ND	280 55000 280 5500	ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B	Reviewed	
Sample #: 004 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile	03/08/07 10 ND ND ND ND ND ND	280 55000 280 5500 5500	ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	Reviewed	
Sample #: 004 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene	03/08/07 10 ND ND ND ND ND ND ND	280 55000 280 5500 5500 280	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	Reviewed	
Sample #: 004 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane	03/08/07 10 ND ND ND ND ND ND ND ND	280 55000 280 5500 5500 280 280	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	Reviewed	
Sample #: 004 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform	03/08/07 10 ND ND ND ND ND ND ND ND ND ND	280 55000 280 5500 5500 280 280 280	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	Reviewed	
Sample #: 004 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane	03/08/07 10 ND ND ND ND ND ND ND ND ND ND ND ND	280 55000 280 5500 5500 280 280 280 280 280	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	Reviewed	
2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride	03/08/07 10 ND ND ND ND ND ND ND ND ND ND ND ND ND	280 55000 280 5500 280 280 280 280 280 280 280	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	Reviewed	

PRELIMINARY DATA SUMMARY

_____ The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user. _____ SATC PAGE 5 Lot #: C7C090301 SAIC Harley Davidson Date Reported: 3/21/07 Project Number: SAIC HD REPORTING ANALYTICAL ____ RESULT LIMIT UNITS PARAMETER METHOD Client Sample ID: PZ-S5 SMD 9.5-10 Sample #: 004 Date Sampled: 03/08/07 10:19 Date Received: 03/09/07 Matrix: SOLID Volatile Organics by GC/MS Reviewed Chloroform ND 280 uq/kq SW846 8260B SW846 8260B Chloromethane 280 ND uq/kq ug/kg Dibromochloromethane ND 280 SW846 8260B ND 1,1-Dichloroethane 280 ug/kg SW846 8260B 1,2-Dichloroethane ND SW846 8260B 280 uq/kq ND SW846 8260B 1,1-Dichloroethene 280 ug/kg ug/kg trans-1,2-Dichloroethene ND SW846 8260B 280 1,2-Dichloropropane ND 280 uq/kq SW846 8260B cis-1,3-Dichloropropene ND 280 ug/kg SW846 8260B ug/kg SW846 8260B trans-1,3-Dichloropropene ND 280 SW846 8260B Ethylbenzene ND 280 ug/kg Methylene chloride 61 J 280 SW846 8260B ug/kg 1,1,2,2-Tetrachloroethane ug/kg SW846 8260B ND 280 Tetrachloroethene 790 280 ug/kg SW846 8260B Toluene 280 SW846 8260B ND ug/kg 1,1,1-Trichloroethane 280 SW846 8260B ND ug/kg ug/kg SW846 8260B 1,1,2-Trichloroethane ND 280 ug/kg SW846 8260B Trichloroethene 1200 280 Vinyl chloride ND 280 uq/kq SW846 8260B Results and reporting limits have been adjusted for dry weight. J Estimated result. Result is less than RL. Inorganic Analysis Reviewed Total Residue as 82.9 1.0 8 MCAWW 160.3 MOD Percent Solids Client Sample ID: PZ-S5 SMD 13-13.5 Sample #: 005 Date Sampled: 03/08/07 10:30 Date Received: 03/09/07 Matrix: SOLID Volatile Organics by GC/MS Reviewed 3.6 ND SW846 8260B 2-Butanone ug/kg 1,4-Dioxane ND 720 uq/kq SW846 8260B cis-1,2-Dichloroethene 0.66 J 3.6 SW846 8260B uq/kq ug/kg Acrolein ND 72 SW846 8260B 72 Acrylonitrile ND SW846 8260B ug/kg

PRELIMINARY DATA SUMMARY

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user.

	SAI	С			PAGE
ot #: C7C090301	SAIC Harle	y Davidso:	n	Date Reporte	ed: 3/21/07
	Project Numb	Project Number: SAIC HD			
		REPORT	ING	ANALYTICAL	ı
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Client Sample ID: PZ-S5 SMD 1	3-13.5				
Sample #: 005 Date Sampled	d: 03/08/07 10	:30 Date	Received:	03/09/07 Matri	x: SOLID
Volatile Organics by GC/MS					Reviewed
Benzene	ND	3.6	ug/kg	SW846 8260	В
Bromodichloromethane	ND	3.6	ug/kg	SW846 8260	В
Bromoform	ND	3.6	ug/kg	SW846 8260	В
Bromomethane	ND	3.6	ug/kg	SW846 8260	В
Carbon tetrachloride	ND	3.6	ug/kg	SW846 8260	В
Chlorobenzene	ND	3.6	ug/kg	SW846 8260	В
Chloroethane	ND	3.6	ug/kg	SW846 8260	В
2-Chloroethyl vinyl ether	ND	7.2	ug/kg	SW846 8260	В
Chloroform	ND	3.6	ug/kg	SW846 8260	В
Chloromethane	ND	3.6	ug/kg	SW846 8260	В
Dibromochloromethane	ND	3.6	ug/kg	SW846 8260	В
1,1-Dichloroethane	ND	3.6	ug/kg	SW846 8260	В
1,2-Dichloroethane	ND	3.6	ug/kg	SW846 8260	В
1,1-Dichloroethene	ND	3.6	ug/kg	SW846 8260	В
trans-1,2-Dichloroethene	ND	3.6	ug/kg	SW846 8260	В
1,2-Dichloropropane	ND	3.6	ug/kg	SW846 8260	В
cis-1,3-Dichloropropene	ND	3.6	ug/kg	SW846 8260	В
trans-1,3-Dichloropropene	ND	3.6	ug/kg	SW846 8260	В
Ethylbenzene	ND	3.6	ug/kg	SW846 8260	В
Methylene chloride	ND	3.6	ug/kg	SW846 8260	В
1,1,2,2-Tetrachloroethane	ND	3.6	ug/kg	SW846 8260	В
Tetrachloroethene	18	3.6	ug/kg	SW846 8260	B
Toluene	ND	3.6	ug/kg	SW846 8260	В
1,1,1-Trichloroethane	ND	3.6	ug/kg	SW846 8260	В
1,1,2-Trichloroethane	ND	3.6	ug/kg	SW846 8260	В
Trichloroethene	42	3.6	ug/kg	SW846 8260	В
Vinyl chloride	ND	3.6	ug/kg	SW846 8260	В
Results and reporting limits have been adjusted for dry	/ weight.				
J Estimated result. Result is less than RL.					
Inorganic Analysis					Reviewed
Total Residue as	82.9	1.0	8	MCAWW 160.	3 MOD
Percent Solids					

PRELIMINARY DATA SUMMARY

_____ The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user.

	SAI	С			PAGE
Lot #: C7C090301	SAIC Harle	y Davidson		Date Reported	: 3/21/07
	Project Numbe				
		REPORTI	NG	ANALYTICAL	
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Client Sample ID: PZ-S5 SMD 14	-14.5				
Sample #: 006 Date Sampled	: 03/08/07 10	:35 Date	Received:	03/09/07 Matrix	: SOLID
Volatile Organics by GC/MS					Reviewed
2-Butanone	ND	220	ug/kg	SW846 8260B	
1,4-Dioxane	ND	43000	ug/kg	SW846 8260B	
cis-1,2-Dichloroethene	ND	220	ug/kg	SW846 8260B	
Acrolein	ND	4300	ug/kg	SW846 8260B	
Acrylonitrile	ND	4300	ug/kg	SW846 8260B	
Benzene	ND	220	ug/kg	SW846 8260B	
Bromodichloromethane	ND	220	ug/kg	SW846 8260B	
Bromoform	ND	220	ug/kg	SW846 8260B	
Bromomethane	ND	220	ug/kg	SW846 8260B	
Carbon tetrachloride	ND	220	ug/kg	SW846 8260B	
Chlorobenzene	ND	220	ug/kg	SW846 8260B	
Chloroethane	ND	220	ug/kg	SW846 8260B	
2-Chloroethyl vinyl ether	ND	430	ug/kg	SW846 8260B	
Chloroform	ND	220	ug/kg	SW846 8260B	
Chloromethane	ND	220	ug/kg	SW846 8260B	
Dibromochloromethane	ND	220	ug/kg	SW846 8260B	
1,1-Dichloroethane	ND	220	ug/kg	SW846 8260B	
1,2-Dichloroethane	ND	220	ug/kg	SW846 8260B	
1,1-Dichloroethene	ND	220	ug/kg	SW846 8260B	
trans-1,2-Dichloroethene	ND	220	ug/kg	SW846 8260B	
1,2-Dichloropropane	ND	220	ug/kg	SW846 8260B	
cis-1,3-Dichloropropene	ND	220	ug/kg	SW846 8260B	
trans-1,3-Dichloropropene	ND	220	ug/kg	SW846 8260B	
Ethylbenzene	ND	220	ug/kg	SW846 8260B	
Methylene chloride	37 J	220	ug/kg	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	220	ug/kg	SW846 8260B	
Tetrachloroethene	360	220	ug/kg	SW846 8260B	
Toluene	ND	220	ug/kg	SW846 8260B	
1,1,1-Trichloroethane	ND	220	ug/kg	SW846 8260B	
1,1,2-Trichloroethane	ND	220	ug/kg	SW846 8260B	
Trichloroethene	750	220	ug/kg	SW846 8260B	
Vinyl chloride	ND	220	ug/kg	SW846 8260B	

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

PRELIMINARY DATA SUMMARY

ot #: C7C090301	SAIC Ha	SAIC rley Davids umber: SAIC		Date Reported:		
PARAMETER	RESUL	REPOR TLIMIT		ANALYTICAL METHOD		
Client Sample ID: PZ-S5 SMD 14	14 5					
Sample #: 006 Date Sampled		10:35 Dat	e Received:	03/09/07 M	Matrix:	SOLID
Inorganic Analysis						Reviewed
Total Residue as Percent Solids	82.5	1.0	9	MCAWW	160.3 1	MOD
Client Sample ID: EW-1 6.5-7		10.50 5-+	- D	02/00/07		
Sample #: 007 Date Sampled	: 03/08/07	10:50 Dat	e Received:	U3/U9/U/ M	Matrix:	SOLID
Volatile Organics by GC/MS						Reviewed
2-Butanone	ND	230	ug/kg	SW846	8260B	
1,4-Dioxane	ND	46000	ug/kg	SW846	8260B	
cis-1,2-Dichloroethene	150 J	230	ug/kg	SW846	8260B	
Acrolein	ND	4600	ug/kg	SW846	8260B	
Acrylonitrile	ND	4600	ug/kg	SW846	8260B	
Benzene	ND	230	ug/kg	SW846	8260B	
Bromodichloromethane	ND	230	ug/kg	SW846	8260B	
Bromoform	ND	230	ug/kg	SW846	8260B	
Bromomethane	ND	230	ug/kg		8260B	
Carbon tetrachloride	ND	230	ug/kg		8260B	
Chlorobenzene	ND	230	ug/kg		8260B	
Chloroethane	ND	230	ug/kg		8260B	
2-Chloroethyl vinyl ether	ND	460	ug/kg		8260B	
Chloroform	ND	230	ug/kg		8260B	
Chloromethane	ND	230	ug/kg		8260B	
Dibromochloromethane	ND	230	ug/kg		8260B	
1,1-Dichloroethane	ND	230	ug/kg		8260B	
1,2-Dichloroethane	ND	230	ug/kg		8260B	
1,1-Dichloroethene	ND	230	ug/kg		8260B	
trans-1,2-Dichloroethene	ND	230	ug/kg		8260B	
1,2-Dichloropropane	ND	230	ug/kg		8260B	
cis-1,3-Dichloropropene	ND	230	ug/kg		8260B	
trans-1,3-Dichloropropene	ND	230	ug/kg		8260B	
Ethylbenzene	ND	230	ug/kg		8260B	
Methylene chloride	42 J	230	ug/kg		8260B	
1,1,2,2-Tetrachloroethane Tetrachloroethene	ND	230	ug/kg		8260B	
	580	230	ug/kg	SW846	8260B	
Toluene	ND	230	ug/kg		8260B	

PRELIMINARY DATA SUMMARY

SOLID Reviewed
Reviewed
Reviewed
MOD
Reviewed
:

PRELIMINARY DATA SUMMARY

ot #: C7C090301	SAI SAIC Harle Project Numb	y Davidson		Date Reported:	PAGE 10 3/21/07
		REPORTING	Ŧ	ANALYTICAL	
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Client Sample ID: EW-1 14-14.5					
Sample #: 008 Date Sampled	: 03/08/07 11	:00 Date Re	eceived:	03/09/07 Matrix:	SOLID
Volatile Organics by GC/MS					Reviewed
cis-1,3-Dichloropropene	ND	230	ug/kg	SW846 8260B	
trans-1,3-Dichloropropene	ND	230	ug/kg	SW846 8260B	
Ethylbenzene	ND	230	ug/kg	SW846 8260B	
Methylene chloride	45 J	230	ug/kg	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	230	ug/kg	SW846 8260B	
Tetrachloroethene	390	230	ug/kg	SW846 8260B	
Toluene	ND	230	ug/kg	SW846 8260B	
1,1,1-Trichloroethane	ND	230	ug/kg	SW846 8260B	
1,1,2-Trichloroethane	ND	230	ug/kg	SW846 8260B	
Trichloroethene	730	230	ug/kg	SW846 8260B	
Vinyl chloride	ND	230	ug/kg	SW846 8260B	
Results and reporting limits have been adjusted for dry v J Estimated result. Result is less than RL.	veight.				
Inorganic Analysis					Reviewed
Total Residue as	81.8	1.0	8	MCAWW 160.3	MOD
Percent Solids					
Client Sample ID: EW-1 15.5-16 Sample #: 009 Date Sampled		:05 Date Re	eceived:	03/09/07 Matrix:	
Client Sample ID: EW-1 15.5-16 Sample #: 009 Date Sampled Volatile Organics by GC/MS	: 03/08/07 11				: SOLID Reviewed
Client Sample ID: EW-1 15.5-16 Sample #: 009 Date Sampled Volatile Organics by GC/MS 2-Butanone	: 03/08/07 11 ND	5.7	ug/kg	SW846 8260B	
Client Sample ID: EW-1 15.5-16 Sample #: 009 Date Sampled Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane	: 03/08/07 11 ND ND	5.7 1100	ug/kg ug/kg	SW846 8260B SW846 8260B	
Client Sample ID: EW-1 15.5-16 Sample #: 009 Date Sampled Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene	: 03/08/07 11 ND ND 3.2 J	5.7 1100 5.7	ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B	
Client Sample ID: EW-1 15.5-16 Sample #: 009 Date Sampled Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein	: 03/08/07 11 ND ND 3.2 J ND	5.7 1100 5.7 110	ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B	
Client Sample ID: EW-1 15.5-16 Sample #: 009 Date Sampled Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile	: 03/08/07 11 ND ND 3.2 J ND ND	5.7 1100 5.7 110 110	ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	
Client Sample ID: EW-1 15.5-16 Sample #: 009 Date Sampled Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene	: 03/08/07 11 ND 3.2 J ND ND ND ND	5.7 1100 5.7 110 110 5.7	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	
Client Sample ID: EW-1 15.5-16 Sample #: 009 Date Sampled Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane	: 03/08/07 11 ND 3.2 J ND ND ND ND ND	5.7 1100 5.7 110 110 5.7 5.7	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	
Client Sample ID: EW-1 15.5-16 Sample #: 009 Date Sampled Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform	: 03/08/07 11 ND 3.2 J ND ND ND ND ND ND	5.7 1100 5.7 110 110 5.7 5.7 5.7	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	
Client Sample ID: EW-1 15.5-16 Sample #: 009 Date Sampled Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane	: 03/08/07 11 ND ND 3.2 J ND ND ND ND ND ND ND ND	5.7 1100 5.7 110 110 5.7 5.7 5.7 5.7	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260B	
Client Sample ID: EW-1 15.5-16 Sample #: 009 Date Sampled Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride	: 03/08/07 11 ND ND 3.2 J ND ND ND ND ND ND ND ND ND	5.7 1100 5.7 110 110 5.7 5.7 5.7 5.7 5.7	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260B	
Client Sample ID: EW-1 15.5-16 Sample #: 009 Date Sampled Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane	: 03/08/07 11 ND ND 3.2 J ND ND ND ND ND ND ND ND	5.7 1100 5.7 110 110 5.7 5.7 5.7 5.7	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260BSW8468260B	

PRELIMINARY DATA SUMMARY

_____ The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user. _____ SATC PAGE 11 Lot #: C7C090301 SAIC Harley Davidson Date Reported: 3/21/07 Project Number: SAIC HD REPORTING ANALYTICAL RESULT LIMIT UNITS METHOD PARAMETER Client Sample ID: EW-1 15.5-16 Sample #: 009 Date Sampled: 03/08/07 11:05 Date Received: 03/09/07 Matrix: SOLID Volatile Organics by GC/MS Reviewed Chloroform ND 5.7 uq/kq SW846 8260B SW846 8260B Chloromethane 5.7 ND ug/kg ug/kg Dibromochloromethane ND 5.7 SW846 8260B ND 1,1-Dichloroethane 5.7 ug/kg SW846 8260B 1,2-Dichloroethane ND 5.7 SW846 8260B uq/kq ND 5.7 SW846 8260B 1,1-Dichloroethene ug/kg ND ug/kg trans-1,2-Dichloroethene SW846 8260B 5.7 5.7 1,2-Dichloropropane ND uq/kq SW846 8260B cis-1,3-Dichloropropene ND 5.7 ug/kg SW846 8260B 5.7 ug/kg SW846 8260B trans-1,3-Dichloropropene ND SW846 8260B Ethylbenzene ND 5.7 ug/kg Methylene chloride 1.5 J 5.7 SW846 8260B uq/kq 1,1,2,2-Tetrachloroethane 5.7 SW846 8260B ND ug/kg Tetrachloroethene 62 5.7 ug/kg SW846 8260B Toluene 5.7 SW846 8260B ND ug/kg 1,1,1-Trichloroethane 5.7 SW846 8260B ND ug/kg ug/kg SW846 8260B 5.7 1,1,2-Trichloroethane ND ug/kg 150 5.7 SW846 8260B Trichloroethene Vinyl chloride ND 5.7 SW846 8260B uq/kq Results and reporting limits have been adjusted for dry weight. J Estimated result. Result is less than RL. Inorganic Analysis Reviewed MCAWW 160.3 MOD Total Residue as 83.2 1.0 8 Percent Solids Client Sample ID: PZ-E5 SMD 9-9.5 Sample #: 010 Date Sampled: 03/08/07 11:20 Date Received: 03/09/07 Matrix: SOLID Volatile Organics by GC/MS Reviewed ND 5.7 SW846 8260B 2-Butanone ug/kg 1,4-Dioxane ND 1100 uq/kq SW846 8260B cis-1,2-Dichloroethene 2.6 J 5.7 ug/kg SW846 8260B ug/kg Acrolein ND 110 SW846 8260B Acrylonitrile ND 110 SW846 8260B ug/kg

PRELIMINARY DATA SUMMARY

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user.

	SAI				PAGE 1	
ot #: C7C090301		y Davidson		Date Reported:		
	Project Numb	er: SAIC HD	1			
		REPORTIN	G	ANALYTICAL		
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
Client Sample ID: PZ-E5 SMD 9-9						
Sample #: 010 Date Sampled:	03/08/07 11	:20 Date R	eceived: ()3/09/07 Matrix:	SOLID	
Volatile Organics by GC/MS					Reviewed	
Benzene	ND	5.7	ug/kg	SW846 8260B		
Bromodichloromethane	ND	5.7	ug/kg	SW846 8260B		
Bromoform	ND	5.7	ug/kg	SW846 8260B		
Bromomethane	ND	5.7	ug/kg	SW846 8260B		
Carbon tetrachloride	ND	5.7	ug/kg	SW846 8260B		
Chlorobenzene	ND	5.7	ug/kg	SW846 8260B		
Chloroethane	ND	5.7	ug/kg	SW846 8260B		
2-Chloroethyl vinyl ether	ND	11	ug/kg	SW846 8260B		
Chloroform	ND	5.7	ug/kg	SW846 8260B		
Chloromethane	ND	5.7	ug/kg	SW846 8260B		
Dibromochloromethane	ND	5.7	ug/kg	SW846 8260B		
1,1-Dichloroethane	ND	5.7	ug/kg	SW846 8260B		
1,2-Dichloroethane	ND	5.7	ug/kg	SW846 8260B		
1,1-Dichloroethene	ND	5.7	ug/kg	SW846 8260B		
trans-1,2-Dichloroethene	ND	5.7	ug/kg	SW846 8260B		
1,2-Dichloropropane	ND	5.7	ug/kg	SW846 8260B		
cis-1,3-Dichloropropene	ND	5.7	ug/kg	SW846 8260B		
trans-1,3-Dichloropropene	ND	5.7	ug/kg	SW846 8260B		
Ethylbenzene	ND	5.7	ug/kg	SW846 8260B		
Methylene chloride	ND	5.7	ug/kg	SW846 8260B		
1,1,2,2-Tetrachloroethane	ND	5.7	ug/kg	SW846 8260B		
Tetrachloroethene	40	5.7	ug/kg	SW846 8260B		
Toluene	ND	5.7	ug/kg	SW846 8260B		
1,1,1-Trichloroethane	ND	5.7	ug/kg	SW846 8260B		
1,1,2-Trichloroethane	ND	5.7	ug/kg	SW846 8260B		
Trichloroethene	48	5.7	ug/kg	SW846 8260B		
Vinyl chloride	ND	5.7	ug/kg	SW846 8260B		
Results and reporting limits have been adjusted for dry w	reight.					
J Estimated result. Result is less than RL.						
Inorganic Analysis					Reviewed	
Total Residue as	80.9	1.0	00	MCAWW 160.3	MOD	
Percent Solids						

PRELIMINARY DATA SUMMARY

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user.

	SAI	С			PAGE 1
Lot #: C7C090301	SAIC Harle	y Davidson		Date Reported:	3/21/07
	Project Numb				
		REPORTIN	1G	ANALYTICAL	
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Client Sample ID: PZ-E5 SMD 14					
Sample #: 011 Date Sampled	: 03/08/07 11	:30 Date F	Received:	03/09/07 Matrix:	SOLID
Volatile Organics by GC/MS					Reviewed
2-Butanone	ND	5.9	ug/kg	SW846 8260B	
1,4-Dioxane	ND	1200	ug/kg	SW846 8260B	
cis-1,2-Dichloroethene	3.3 J	5.9	ug/kg	SW846 8260B	
Acrolein	ND	120	ug/kg	SW846 8260B	
Acrylonitrile	ND	120	ug/kg	SW846 8260B	
Benzene	ND	5.9	ug/kg	SW846 8260B	
Bromodichloromethane	ND	5.9	ug/kg	SW846 8260B	
Bromoform	ND	5.9	ug/kg	SW846 8260B	
Bromomethane	ND	5.9	ug/kg	SW846 8260B	
Carbon tetrachloride	ND	5.9	ug/kg	SW846 8260B	
Chlorobenzene	ND	5.9	ug/kg	SW846 8260B	
Chloroethane	ND	5.9	ug/kg	SW846 8260B	
2-Chloroethyl vinyl ether	ND	12	ug/kg	SW846 8260B	
Chloroform	ND	5.9	ug/kg	SW846 8260B	
Chloromethane	ND	5.9	ug/kg	SW846 8260B	
Dibromochloromethane	ND	5.9	ug/kg	SW846 8260B	
1,1-Dichloroethane	ND	5.9	ug/kg	SW846 8260B	
1,2-Dichloroethane	ND	5.9	ug/kg	SW846 8260B	
1,1-Dichloroethene	ND	5.9	ug/kg	SW846 8260B	
trans-1,2-Dichloroethene	ND	5.9	ug/kg	SW846 8260B	
1,2-Dichloropropane	ND	5.9	ug/kg	SW846 8260B	
cis-1,3-Dichloropropene	ND	5.9	ug/kg	SW846 8260B	
trans-1,3-Dichloropropene	ND	5.9	ug/kg	SW846 8260B	
Ethylbenzene	ND	5.9	ug/kg	SW846 8260B	
Methylene chloride	1.9 J	5.9	ug/kg	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	5.9	ug/kg	SW846 8260B	
Tetrachloroethene	46	5.9	ug/kg	SW846 8260B	
Toluene	ND	5.9	ug/kg	SW846 8260B	
1,1,1-Trichloroethane	ND	5.9	ug/kg	SW846 8260B	
1,1,2-Trichloroethane	ND	5.9	ug/kg	SW846 8260B	
Trichloroethene	100	5.9	ug/kg	SW846 8260B	
Vinyl chloride	ND	5.9	ug/kg	SW846 8260B	

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

PRELIMINARY DATA SUMMARY

ot #: C7C090301	SAIC Ha	SAIC SAIC Harley Davidson			Date R	PAGE 14 3/21/07	
PARAMETER	Project Number: RESULT		REPORTING			YTICAL	
FARAMETER		± :		<u>UNITS</u>	<u>MB111</u>		
Client Sample ID: PZ-E5 SMD 14-	14.5						
Sample #: 011 Date Sampled:		11:30	Date	Received:	03/09/07	Matrix:	SOLID
Inorganic Analysis							Reviewed
Total Residue as	84.5		1.0	00	MCAW	W 160.3	MOD
Percent Solids							
Client Sample ID: PZ-E5 SMD 19.							
Sample #: 012 Date Sampled:	03/08/07	11:35	Date	Received:	03/09/07	Matrix:	SOLID
Volatile Organics by GC/MS							Reviewed
2-Butanone	ND		4.4	ug/kg		6 8260B	
1,4-Dioxane	ND		880	ug/kg		6 8260B	
cis-1,2-Dichloroethene	ND		4.4	ug/kg		6 8260B	
Acrolein	ND		88	ug/kg		6 8260B	
Acrylonitrile	ND		88	ug/kg		6 8260B	
Benzene	ND		4.4	ug/kg		6 8260B	
Bromodichloromethane	ND		4.4	ug/kg		6 8260B	
Bromoform	ND		4.4	ug/kg		6 8260B	
Bromomethane	ND		4.4	ug/kg		6 8260B	
Carbon tetrachloride	ND		4.4	ug/kg		6 8260B	
Chlorobenzene	ND		4.4	ug/kg		6 8260B	
Chloroethane	ND		4.4	ug/kg		6 8260B	
2-Chloroethyl vinyl ether	ND		8.8	ug/kg		6 8260B	
Chloroform	ND		4.4	ug/kg		6 8260B	
Chloromethane	ND		4.4	ug/kg		6 8260B	
Dibromochloromethane	ND		4.4	ug/kg		6 8260B	
1,1-Dichloroethane	ND		4.4	ug/kg		6 8260B	
1,2-Dichloroethane	ND		4.4	ug/kg		6 8260B	
1,1-Dichloroethene	ND		4.4	ug/kg		6 8260B	
trans-1,2-Dichloroethene	ND		4.4	ug/kg		6 8260B	
1,2-Dichloropropane	ND		4.4	ug/kg		6 8260B	
cis-1,3-Dichloropropene	ND		4.4	ug/kg		6 8260B	
trans-1,3-Dichloropropene	ND		4.4	ug/kg		6 8260B	
Ethylbenzene Mathulana, shlavida	ND		4.4	ug/kg		6 8260B	
Methylene chloride	ND		4.4	ug/kg		6 8260B	
1,1,2,2-Tetrachloroethane	ND 2 F T		4.4 4.4	ug/kg		6 8260B	
Tetrachloroethene Toluene	2.5 J ND		4.4 4.4	ug/kg ug/kg		6 8260B 6 8260B	
	11111			1101/1601	5w84	0 0/008	

PRELIMINARY DATA SUMMARY

ot #: C7C090301		ey Davidson Der: SAIC HD		Date Reported:	PAGE 1 3/21/07
PARAMETER	RESULT	REPORTING	UNITS	ANALYTICAL <u>METHOD</u>	
Client Sample ID: PZ-E5 SMD 19.	5-20				
		:35 Date Red	ceived: 03	8/09/07 Matrix:	SOLID
Volatile Organics by GC/MS					Reviewed
1,1,2-Trichloroethane	ND	4.4	ug/kg	SW846 8260B	
Trichloroethene	4.2 J	4.4	ug/kg	SW846 8260B	
Vinyl chloride	ND	4.4	ug/kg	SW846 8260B	
Results and reporting limits have been adjusted for dry we J Estimated result. Result is less than RL.	ight.				
Inorganic Analysis					Reviewed
Total Residue as	93.8	1.0	8	MCAWW 160.3 I	MOD
Percent Solids			-		-
-		.:50 Date Rec	ceived: 03	3/09/07 Matrix:	SOLID
Sample #: 013 Date Sampled:		.:50 Date Red	ceived: 03	3/09/07 Matrix:	
—				3/09/07 Matrix: SW846 8260B	SOLID Reviewed
Sample #: 013 Date Sampled: Volatile Organics by GC/MS 2-Butanone	03/08/07 11	6.8	ug/kg		
Sample #: 013 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane	03/08/07 11 ND	6.8 1400	ug/kg ug/kg	SW846 8260B	
Sample #: 013 Date Sampled: Volatile Organics by GC/MS 2-Butanone	03/08/07 11 ND ND	6.8	ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B	
Sample #: 013 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene	03/08/07 11 ND ND 3.1 J	6.8 1400 6.8	ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B	
<pre>Sample #: 013 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein</pre>	03/08/07 11 ND ND 3.1 J ND	6.8 1400 6.8 140	ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B	
<pre>Sample #: 013 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile</pre>	03/08/07 11 ND 3.1 J ND ND ND	6.8 1400 6.8 140 140	ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	
<pre>Sample #: 013 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene</pre>	03/08/07 11 ND 3.1 J ND ND ND ND	6.8 1400 6.8 140 140 6.8	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	
<pre>Sample #: 013 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane</pre>	03/08/07 11 ND 3.1 J ND ND ND ND ND	6.8 1400 6.8 140 140 6.8 6.8	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	
<pre>Sample #: 013 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform</pre>	03/08/07 11 ND 3.1 J ND ND ND ND ND ND	6.8 1400 6.8 140 140 6.8 6.8 6.8	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	
<pre>Sample #: 013 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane</pre>	03/08/07 11 ND ND 3.1 J ND ND ND ND ND ND ND ND	6.8 1400 6.8 140 140 6.8 6.8 6.8 6.8 6.8	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	
Sample #: 013 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane	03/08/07 11 ND ND ND ND ND ND ND ND ND ND ND ND	6.8 1400 6.8 140 140 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	
Sample #: 013 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether	03/08/07 11 ND ND ND ND ND ND ND ND ND ND ND ND ND	6.8 1400 6.8 140 140 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 14	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B	
Sample #: 013 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform	03/08/07 11 ND ND 3.1 J ND ND ND ND ND ND ND ND ND ND	6.8 1400 6.8 140 140 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B	
Sample #: 013 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane	03/08/07 11 ND ND 3.1 J ND ND ND ND ND ND ND ND ND ND	6.8 1400 6.8 140 140 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 14 6.8 6.8	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B	
Sample #: 013 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane	03/08/07 11 ND ND 3.1 J ND ND ND ND ND ND ND ND ND ND ND ND ND	6.8 1400 6.8 140 140 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 14 6.8 6.8 6.8 6.8	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B	
Sample #: 013 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane	03/08/07 11 ND ND 3.1 J ND ND ND ND ND ND ND ND ND ND	6.8 1400 6.8 140 140 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 14 6.8 6.8 6.8 6.8 14 6.8 6.8 6.8 6.8	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B	
Sample #: 013 Date Sampled: Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane	03/08/07 11 ND ND 3.1 J ND ND ND ND ND ND ND ND ND ND	6.8 1400 6.8 140 140 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B	
Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane	03/08/07 11 ND ND 3.1 J ND ND ND ND ND ND ND ND ND ND	6.8 1400 6.8 140 140 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 14 6.8 6.8 6.8 6.8 14 6.8 6.8 6.8 6.8	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B	

PRELIMINARY DATA SUMMARY

ot #: C7C090301		y Davidson		Date Reported:		
	Project Numb					
		REPORTING		ANALYTICAL METHOD		
PARAMETER	<u>RESULT</u>	LIMIT	<u>UNITS</u>	MEIHOD		
Client Sample ID: PZ-E15 SMD 9-	95					
Sample #: 013 Date Sampled:		:50 Date Red	reived: O	3/09/07 Matrix	SOLID	
banpie nº 015 Date banpiea	03/00/07 11	Duce Rec		5,05,07 Haciin	DOLLD	
Volatile Organics by GC/MS					Reviewed	
cis-1,3-Dichloropropene	ND	6.8	ug/kg	SW846 8260B		
trans-1,3-Dichloropropene	ND	6.8	ug/kg	SW846 8260B		
Ethylbenzene	ND	6.8	ug/kg	SW846 8260B		
Methylene chloride	4.9 J	6.8	ug/kg	SW846 8260B		
1,1,2,2-Tetrachloroethane	ND	6.8	ug/kg	SW846 8260B		
Tetrachloroethene	58	6.8	ug/kg	SW846 8260B		
Toluene	ND	6.8	ug/kg	SW846 8260B		
1,1,1-Trichloroethane	ND	6.8	ug/kg	SW846 8260B		
1,1,2-Trichloroethane	ND	6.8	ug/kg	SW846 8260B		
Trichloroethene	59	6.8	ug/kg	SW846 8260B		
Vinyl chloride	ND	6.8	ug/kg	SW846 8260B		
Results and reporting limits have been adjusted for dry w J Estimated result. Result is less than RL.	eight.					
Inorganic Analysis					Reviewed	
Total Residue as	81.6	1.0	00	MCAWW 160.3	MOD	
Percent Solids						
Client Sample ID: PZ-E15 SMD 15			reived: 0	3/09/07 Matrix	SOLID	
Sample #: 014 Date Sampled:	03,00,0, 12	:00 Date Red				
Volatile Organics by GC/MS						
Volatile Organics by GC/MS 2-Butanone	ND	7.4	ug/kg	SW846 8260B		
Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane	ND ND	7.4 1500	ug/kg ug/kg	SW846 8260B SW846 8260B		
Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene	ND ND 3.6 J	7.4 1500 7.4	ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B		
Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein	ND ND 3.6 J ND	7.4 1500 7.4 150	ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B		
Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile	ND ND 3.6 J ND ND	7.4 1500 7.4 150 150	ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B		
Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene	ND ND 3.6 J ND ND ND	7.4 1500 7.4 150 150 7.4	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B		
Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane	ND ND 3.6 J ND ND ND ND	7.4 1500 7.4 150 150 7.4 7.4	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B		
Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform	ND ND 3.6 J ND ND ND ND ND	7.4 1500 7.4 150 150 7.4 7.4 7.4	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B		
Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane	ND ND 3.6 J ND ND ND ND ND ND	7.4 1500 7.4 150 150 7.4 7.4 7.4 7.4 7.4	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B		
Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride	ND ND 3.6 J ND ND ND ND ND ND ND ND	7.4 1500 7.4 150 150 7.4 7.4 7.4 7.4 7.4 7.4 7.4	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	Reviewed	
Volatile Organics by GC/MS 2-Butanone 1,4-Dioxane cis-1,2-Dichloroethene Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane	ND ND 3.6 J ND ND ND ND ND ND	7.4 1500 7.4 150 150 7.4 7.4 7.4 7.4 7.4	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B		

PRELIMINARY DATA SUMMARY

_____ The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user. _____ SATC PAGE 17 Lot #: C7C090301 SAIC Harley Davidson Date Reported: 3/21/07 Project Number: SAIC HD REPORTING ANALYTICAL _____ RESULT LIMIT UNITS PARAMETER METHOD Client Sample ID: PZ-E15 SMD 15-15.5 Sample #: 014 Date Sampled: 03/08/07 12:00 Date Received: 03/09/07 Matrix: SOLID Volatile Organics by GC/MS Reviewed Chloroform ND 7.4 uq/kq SW846 8260B SW846 8260B Chloromethane 7.4 ug/kg ND ug/kg Dibromochloromethane ND 7.4 SW846 8260B ND 1,1-Dichloroethane 7.4 ug/kg SW846 8260B 1,2-Dichloroethane ND 7.4 SW846 8260B uq/kq ND 7.4 SW846 8260B 1,1-Dichloroethene ug/kg ND ug/kg trans-1,2-Dichloroethene SW846 8260B 7.4 1,2-Dichloropropane ND 7.4 uq/kq SW846 8260B cis-1,3-Dichloropropene ND 7.4 ug/kg SW846 8260B 7.4 ug/kg SW846 8260B trans-1,3-Dichloropropene ND Ethylbenzene ND 7.4 ug/kg SW846 8260B Methylene chloride 2.3 J 7.4 SW846 8260B uq/kq 1,1,2,2-Tetrachloroethane 7.4 SW846 8260B ND ug/kg Tetrachloroethene 41 7.4 ug/kg SW846 8260B Toluene 7.4 SW846 8260B ND ug/kg 1,1,1-Trichloroethane 7.4 SW846 8260B ND ug/kg 7.4 SW846 8260B 1,1,2-Trichloroethane ND ug/kg ug/kg 76 7.4 SW846 8260B Trichloroethene Vinyl chloride ND 7.4 SW846 8260B uq/kq Results and reporting limits have been adjusted for dry weight. J Estimated result. Result is less than RL. Inorganic Analysis Reviewed 8 Total Residue as 82.1 1.0 MCAWW 160.3 MOD Percent Solids Client Sample ID: PZ-E15 SMD 19.5-20 Sample #: 015 Date Sampled: 03/08/07 12:05 Date Received: 03/09/07 Matrix: SOLID Volatile Organics by GC/MS Reviewed 2-Butanone ND 5.3 SW846 8260B ug/kg 1,4-Dioxane ND 1100 uq/kq SW846 8260B cis-1,2-Dichloroethene ND 5.3 ug/kg SW846 8260B ug/kg Acrolein ND 110 SW846 8260B ND Acrylonitrile 110 SW846 8260B ug/kg

PRELIMINARY DATA SUMMARY

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user.

	SAI	С			PAGE 1
t #: C7C090301	SAIC Harle	y Davidson	L	Date Reported	: 3/21/07
	Project Numb	er: SAIC H	D	_	
		REPORTI		ANALYTICAL	
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Client Sample ID: PZ-E15 SMD 1					
Sample #: 015 Date Sampled	: 03/08/07 12	:05 Date	Received: 0	3/09/07 Matrix	: SOLID
Volatile Organics by GC/MS					Reviewed
Benzene	ND	5.3	ug/kg	SW846 8260B	
Bromodichloromethane	ND	5.3	ug/kg	SW846 8260B	
Bromoform	ND	5.3	ug/kg	SW846 8260B	
Bromomethane	ND	5.3	ug/kg	SW846 8260B	
Carbon tetrachloride	ND	5.3	ug/kg	SW846 8260B	
Chlorobenzene	ND	5.3	ug/kg	SW846 8260B	
Chloroethane	ND	5.3	ug/kg	SW846 8260B	
2-Chloroethyl vinyl ether	ND	11	ug/kg	SW846 8260B	
Chloroform	ND	5.3	ug/kg	SW846 8260B	
Chloromethane	ND	5.3	ug/kg	SW846 8260B	
Dibromochloromethane	ND	5.3	ug/kg	SW846 8260B	
1,1-Dichloroethane	ND	5.3	ug/kg	SW846 8260B	
1,2-Dichloroethane	ND	5.3	ug/kg	SW846 8260B	
1,1-Dichloroethene	ND	5.3	ug/kg	SW846 8260B	
trans-1,2-Dichloroethene	ND	5.3	ug/kg	SW846 8260B	
1,2-Dichloropropane	ND	5.3	ug/kg	SW846 8260B	
cis-1,3-Dichloropropene	ND	5.3	ug/kg	SW846 8260B	
trans-1,3-Dichloropropene	ND	5.3	ug/kg	SW846 8260B	
Ethylbenzene	ND	5.3	ug/kg	SW846 8260B	
Methylene chloride	ND	5.3	ug/kg	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	5.3	ug/kg	SW846 8260B	
Tetrachloroethene	4.9 J	5.3	ug/kg	SW846 8260B	
Toluene	ND	5.3	ug/kg	SW846 8260B	
1,1,1-Trichloroethane	ND	5.3	ug/kg	SW846 8260B	
1,1,2-Trichloroethane	ND	5.3	ug/kg	SW846 8260B	
Trichloroethene	3.5 J	5.3	ug/kg	SW846 8260B	
Vinyl chloride	ND	5.3	ug/kg	SW846 8260B	
Results and reporting limits have been adjusted for dry	weight.				
J Estimated result. Result is less than RL.					
Inorganic Analysis					Reviewed
Total Residue as	86.9	1.0	80	MCAWW 160.3	MOD
Percent Solids					

PRELIMINARY DATA SUMMARY

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user.

	SAI	2			PAGE
ot #: C7C090301	SAIC Harle	y Davidso	n	Date Reported:	3/21/0
	Project Numbe	er: SAIC	_		
		REPORT	ANALYTICAL		
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Client Sample ID: TRIP BLANK					
Sample #: 016 Date Sampled:	03/08/07 12	:05 Date	Received:	03/09/07 Matrix:	WATER
Volatile Organics by GC/MS					Reviewed
Acrolein	ND	20	ug/L	SW846 8260B	
Acrylonitrile	ND	20	ug/L	SW846 8260B	
Benzene	ND	1.0	ug/L	SW846 8260B	
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B	
Bromoform	ND	1.0	ug/L	SW846 8260B	
Bromomethane	ND	1.0	ug/L	SW846 8260B	
2-Butanone (MEK)	ND	5.0	ug/L	SW846 8260B	
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B	
Chlorobenzene	ND	1.0	ug/L	SW846 8260B	
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B	
Chloroethane	ND	1.0	ug/L	SW846 8260B	
2-Chloroethyl vinyl ether	ND	2.0	ug/L	SW846 8260B	
Chloroform	ND	1.0	ug/L	SW846 8260B	
Chloromethane	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B	
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
1,4-Dioxane	ND	200	ug/L	SW846 8260B	
Ethylbenzene	ND	1.0	ug/L	SW846 8260B	
Methylene chloride	ND	1.0	ug/L	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B	
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B	
Toluene	ND	1.0	ug/L	SW846 8260B	
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
Trichloroethene	ND	1.0	ug/L	SW846 8260B	
Vinyl chloride	ND	1.0	ug/L	SW846 8260B	

Analytical Laboratory & Geoprobe Sampling

5/10/07

Mr. Roger Myers SAIC 6310 Allentown Blvd. Harrisburg, PA 17112

Dear Roger:

Enclosed are the sample data report, chain of custody record and quality control data for the samples received on May 1, 2007 for your project; 01-1633-00-9823-000 Harley Davidson Area B.

Please give me a call if you have questions or I can be of further assistance. Thank you for using Vaportech Services.

Sincerely,

Dur Mark

David J. Masdea

Enclosure:

Vaportech Services, Inc.

SAC118-70302

Science Applications International Corporation Project: 01-1633-00-9823-000 Harley Davidson Area B

CONCENTRATIONS IN PPMV

COMPOUND	VEW-1 (S)-A	VEW-1(S)-B	VEW-1 (D)-A	VEW-1 (D)-B	PQL
1,1 DICHLOROETHYLENE	0.05	ND	ND	ND	0.01
METHYLENE CHLORIDE	ND	ND	ND	ND	0.1
TRANS-1,2 DICHLOROETHYLENE	0.06	0.06	0.03	ND	0.01
1,1 DICHLOROETHANE	ND	ND	ND	ND	0.05
CIS-1,2 DICHLOROETHYLENE	12.04	8.30	4.66	2.74	0.01
CHLOROFORM	0.005	ND	ND	ND	0.005
1,1,1 TRICHLOROETHANE	0.399	0.326	0.280	0.124	0.005
CARBON TETRACHLORIDE	ND	ND	ND	ND	0.005
TRICHLOROETHYLENE	79.454	71.837	40.631	19.460	0.005
TETRACHLOROETHYLENE	48.656	41.398	32.877	18.493	0.005
FILE NAME	V52B1.43A	V52B1.44A	V52B1.45A	V52B1.46A	
DATE SAMPLED	04/24/07	04/26/07	04/26/07	04/28/07	
DATE RECEIVED	05/01/07	05/01/07	05/01/07	05/01/07	
DATE ANALYZED	05/03/07	05/03/07	05/03/07	05/03/07	

PQL - denotes lower 'Practical Quantitation Limit'

ND - 'Not Detected' at or above the lower practical quantitation limit

m Reviewed by:

Vaportech Services, Inc.

Science Applications International Corporation Quality Control Laboratory Project(s): 70302

..

CONTINUING CALIBRATION CHECK

LABORATORY BLANK RESULTS

N

 STANDARDS:
 21V-R4

 FILE NAME:
 V52A/B1.23A

 DATE ANALYZED:
 05/02/07

BLANK: N2 IN VIAL FILE NAME: V52A/B1.22A DATE ANALYZED: 05/02/07

	KNOWN	RESULT	PERCENT		BLANK	PRACTICAL QUANTITATION LIMIT	
COMPOUND	(PPMV)	(PPMV) DIFFERENCE		COMPOUND	(PPMV)	(PPMV)	
1,1 DICHLOROETHYLENE	1.01	0.94	7.23	1,1 DICHLOROETHYLENE	ND	0.01	
METHYLENE CHLORIDE	1.15	1.10	4.61	METHYLENE CHLORIDE	ND	0.10	
TRANS-1,2 DICHLOROETHYLENE	1.01	0.97	4.16	TRANS-1,2 DICHLOROETHYLEN	ND	0.01	
1,1 DICHLOROETHANE	0.99	0.96	2.63	1,1 DICHLOROETHANE	ND	0.02	
CIS-1,2 DICHLOROETHYLENE	1.01	0.99	2.38	CIS-1,2 DICHLOROETHYLENE	ND	0.01	
CHLOROFORM	0.820	0.793	3.29	CHLOROFORM	ND	0.005	
1,1,1 TRICHLOROETHANE	0.730	0.707	3.15	1,1,1 TRICHLOROETHANE	ND	0.005	
CARBON TETRACHLORIDE	0.640	0.711	11.09	CARBON TETRACHLORIDE	ND	0.005	
TRICHLOROETHYLENE	0.740	0.719	2.84	TRICHLOROETHYLENE	ND	0.005	
TETRACHLOROETHYLENE	0.590	0.575	2.54	TETRACHLOROETHYLENE	ND	0.005	

1

ND - 'Not Detected' at or above the lower practical quantitation limit

Reviewed by:

SAC 118-70302 CHAIN-OF-CUSTODY RECORD

1158 Pittsburgh Road • Suite 201 • Valencia, PA 16059 Tel: 724-898-2622 · Fax: 724-898-2633

Company Name:	SAIC		
Address: 6310	ALLENTON	UN BLUD.	
City: HART	RISBURG	State: PA	Zip: /7//2
Proj. Manager:	ROGER MY	ERS	
Proj. Location:	HARLEY-DA	VIDSON A	eer-B
Proj. Number:	01-1633-00-	4823-000	
Phone #: 717-90	1-8831	Fax #: 717-90	01-8103

320,00

Ana	lysis Options:	Enter letters in Reque	sted Analysis columns below.
A	Light Hydrocarbons	F	BTEX
B	Permanent Gases	G	BTEX & C5 - C10
С	Methane	Н	TPH (C4 - C12 range)
D	Methane, Ethane, Ethylene	Ι	Chlorinated Hydrocarbons
E	Hydrogen	J	624 Compound List

Sampler's signature:

Permanent Gases: BTEX: C5-C10: **Chlorinated HC:**

Light Hydrocarbons: Methane, Ethane, Ethylene, Propane, Propylene, iso-Butane, n-Butane Carbon Dioxide, Oxygen, Nitrogen, Methane, Carbon Monoxide Benzene, Toluene, Ethyl Benzene, m & p -Xylene, o-Xylene

Pentane, Hexane, Heptane, Octane, Nonane, Decane 1,1-DCE, 1,1-DCA, Methylene Chloride, trans-1,2-DCE, cis-1,2-DCE, Chloroform

1,1,1-TCA, Carbon Tetrachloride, Trichloroethylene (TCE), Tetrachloroethylene (PCE)

Colle Date	ction Time	Number of Containers			Sample dentification		Peque	sted Ana	lveie	(Other)		Remark	e
	-				the second se			steu Ana	19313	(other)		and the second se	
4/24/07	1815	2	AIR	VEW-16			I	_				197 SA	
4/26/07	1530	2	AIR	VEW-11	s)-B		I				Con	ECTSD ON	5 4/24/07
4/24/07	1630	2	AIR	VEW-1(1)-A		I						
4/26/07 4/26/07 4/28/07	1530	2	AIR	VEW-1(1			I				-		
				and a	4/25/0	2							
				gene									
	/												
6								_					
Results t	°: Ro	GER Mic	rs				Invoice to	" S	AIC				
BRO	shed by : DKS AB	EIN	Company :	SAIC	Date : 4/30/07	Time : /7 <i>0</i> 0	Received	FEDS	C×	Company : FCD	٤x	Date : 4/30/07	Time : 1700
Relinqui			Company :		Date :	Time :	Received	by: 2 and	me	Company : VAPO	teck	Date : 5-1-07	Time : 1000
Relinqui	shed by :		Company :		Date :	Time :	Received	by :		Company :		Date :	Time :
				WHITE COPY	: Laboratory to r	eturn.	YELLOW (COPY : La	boratory	PINK COPY : S	ubmitter		

APPENDIX E

Loading Calculations

Table E-1 Calculation of Initial TCE Loading Rate from Shallow Zone

Harley-Davidson Motor Company Operations, Inc. Area B - Soil Vapor Extraction Pilot Test

Sampling Event: VEW-1(S) A Trichloroethylene (TCE) 1. Convert Laboratory TCE concentration in volume/volume basis to a mass/volume basis: (MW/24.05 L)(ppmv) = ug/LEst. TCE $MW^1 =$ 131.4 g/mole $1 \text{ mole}^2 =$ 22.41 L Laboratory TCE Concentration = 79.454 ppmv TCE = 465.87 ug/L 2. Convert TCE concentration in mass/volume to estimated removal rate: (TCEs)(Flow rate)(28.32L/ft3)(60mins/hr)(1g/106ug)(1lb/454g) = lbs TCE/Hr TCEs = 465.87 ug/L ft³/min Flow rate = 347 $28.32L/ft^3 =$ 28.32 L/ft³ 60mins/hr = 60 min/hr $1g/10^{6}ug = 0.000001 g/ug$ 1lb/454g = 0.0022lbs/g Output Mass Loading Rate = 0.60 lbs TCE/Hr 14.50 lbs TCE/day

Notes:

1. Estimated Molecular weight of TCEg (Trichloroethylene) = 131.4 g/mole

Taken from the NIOSH Pocket Guide to Hazardous Chemicals

Table E-2Calculation of Initial PCE Loading Rate from Shallow Zone

Harley-Davidson Motor Company Operations, Inc. Area B - Soil Vapor Extraction Pilot Test

Sampling Event: VEW-1(S) A Tetrachloroethylene (PCE) 1. Convert Laboratory PCE concentration in volume/volume basis to a mass/volume basis: (MW/24.05 L)(ppmv) = ug/LEst. PCE $MW^1 =$ 165.8 g/mole $1 \text{ mole}^2 =$ 22.41 L Laboratory PCE Concentration = 48.656 ppmv PCE = 359.98 ug/L 2. Convert PCE concentration in mass/volume to estimated removal rate: (PCEs)(Flow rate)(28.32L/ft3)(60mins/hr)(1g/106ug)(1lb/454g) = lbs PCE/Hr PCEs = 359.98 ug/L ft³/min Flow rate = 347 $28.32L/ft^3 =$ 28.32 L/ft³ 60mins/hr = 60 min/hr $1g/10^{6}ug = 0.000001 g/ug$ 1lb/454g = 0.0022lbs/g Output Mass Loading Rate = 0.47 lbs PCE/Hr 11.21 lbs PCE/day

Notes:

1. Estimated Molecular weight of PCEg (Tetrachloroethylene) = 165.8 g/mole

Taken from the NIOSH Pocket Guide to Hazardous Chemicals

Table E-3Calculation of Final TCE Loading Rate from Shallow Zone

Harley-Davidson Motor Company Operations, Inc. Area B - Soil Vapor Extraction Pilot Test

Sampling Event: VEW-1(S) B Trichloroethylene (TCE) 1. Convert Laboratory TCE concentration in volume/volume basis to a mass/volume basis: (MW/24.05 L)(ppmv) = ug/LEst. TCE $MW^1 =$ 131.4 g/mole $1 \text{ mole}^2 =$ 22.41 L Laboratory TCE Concentration = 71.837 ppmv TCE = 421.21 ug/L 2. Convert TCE concentration in mass/volume to estimated removal rate: (TCEs)(Flow rate)(28.32L/ft3)(60mins/hr)(1g/106ug)(1lb/454g) = lbs TCE/Hr TCEs = 421.21 ug/L ft³/min Flow rate = 347 $28.32L/ft^3 =$ 28.32 L/ft³ 60mins/hr = 60 min/hr $1g/10^{6}ug = 0.000001 g/ug$ 1lb/454g = 0.0022lbs/g Output Mass Loading Rate = 0.55 lbs TCE/Hr 13.11 lbs TCE/day

Notes:

1. Estimated Molecular weight of TCEg (Trichloroethylene) = 131.4 g/mole

Taken from the NIOSH Pocket Guide to Hazardous Chemicals

Table E-4Calculation of Final PCE Loading Rate from Shallow Zone

Harley-Davidson Motor Company Operations, Inc. Area B - Soil Vapor Extraction Pilot Test

Sampling Event: VEW-1(S) B Tetrachloroethylene (PCE) 1. Convert Laboratory PCE concentration in volume/volume basis to a mass/volume basis: (MW/24.05 L)(ppmv) = ug/LEst. PCE $MW^1 =$ 165.8 g/mole $1 \text{ mole}^2 =$ 22.41 L Laboratory PCE Concentration = 41.398 ppmv PCE = 306.28 ug/L 2. Convert PCE concentration in mass/volume to estimated removal rate: (PCEs)(Flow rate)(28.32L/ft3)(60mins/hr)(1g/106ug)(1lb/454g) = lbs PCE/Hr PCEs = 306.28 ug/L ft³/min Flow rate = 347 28.32L/ft³ = 28.32 L/ft³ 60mins/hr = 60 min/hr $1g/10^{6}ug = 0.000001 g/ug$ 1lb/454g = 0.0022lbs/g Output Mass Loading Rate = 0.40 lbs PCE/Hr 9.54 lbs PCE/day

Notes:

1. Estimated Molecular weight of PCEg (Tetrachloroethylene) = 165.8 g/mole

Taken from the NIOSH Pocket Guide to Hazardous Chemicals

Table E-5Calculation of Initial TCE Loading Rate from Deep Zone

Harley-Davidson Motor Company Operations, Inc. Area B - Soil Vapor Extraction Pilot Test

Sampling Event: VEW-1(D) A Trichloroethylene (TCE) 1. Convert Laboratory TCE concentration in volume/volume basis to a mass/volume basis: (MW/24.05 L)(ppmv) = ug/LEst. TCE $MW^1 =$ 131.4 g/mole $1 \text{ mole}^2 =$ 22.41 L Laboratory TCE Concentration = 40.631 ppmv TCE = 238.24 ug/L 2. Convert TCE concentration in mass/volume to estimated removal rate: (TCEs)(Flow rate)(28.32L/ft3)(60mins/hr)(1g/106ug)(1lb/454g) = lbs TCE/Hr TCEs = 238.24 ug/L ft³/min Flow rate = 176.1 $28.32L/ft^3 = 28.32 L/ft^3$ 60mins/hr = 60 min/hr $1g/10^{6}ug = 0.000001 g/ug$ 1lb/454g = 0.0022lbs/g Output Mass Loading Rate = 0.16 lbs TCE/Hr 3.76 lbs TCE/day

Notes:

1. Estimated Molecular weight of TCEg (Trichloroethylene) = 131.4 g/mole

Taken from the NIOSH Pocket Guide to Hazardous Chemicals

Table E-6Calculation of Initial PCE Loading Rate from Deep Zone

Harley-Davidson Motor Company Operations, Inc. Area B - Soil Vapor Extraction Pilot Test

Sampling Event: VEW-1(D) A Tetrachloroethylene (PCE) 1. Convert Laboratory PCE concentration in volume/volume basis to a mass/volume basis: (MW/24.05 L)(ppmv) = ug/LEst. PCE $MW^1 =$ 165.8 g/mole $1 \text{ mole}^2 =$ 22.41 L Laboratory PCE Concentration = 32.877 ppmv PCE = 243.24 ug/L 2. Convert PCE concentration in mass/volume to estimated removal rate: (PCEs)(Flow rate)(28.32L/ft3)(60mins/hr)(1g/106ug)(1lb/454g) = lbs PCE/Hr PCEs = 243.24 ug/L ft³/min Flow rate = 176.1 $28.32L/ft^3 = 28.32 L/ft^3$ 60mins/hr = 60 min/hr $1g/10^{6}ug = 0.000001 g/ug$ 1lb/454g = 0.0022lbs/g Output Mass Loading Rate = 0.16 lbs PCE/Hr 3.84 lbs PCE/day

Notes:

1. Estimated Molecular weight of PCEg (Tetrachloroethylene) = 165.8 g/mole

Taken from the NIOSH Pocket Guide to Hazardous Chemicals

Table E-7 Calculation of Final TCE Loading Rate from Deep Zone

Harley-Davidson Motor Company Operations, Inc. Area B - Soil Vapor Extraction Pilot Test

Sampling Event: VEW-1(D) B Trichloroethylene (TCE) 1. Convert Laboratory TCE concentration in volume/volume basis to a mass/volume basis: (MW/24.05 L)(ppmv) = ug/LEst. TCE $MW^1 =$ 131.4 g/mole $1 \text{ mole}^2 =$ 22.41 L 19.46 Laboratory TCE Concentration = ppmv TCE = 114.10 ug/L 2. Convert TCE concentration in mass/volume to estimated removal rate: (TCEs)(Flow rate)(28.32L/ft3)(60mins/hr)(1g/106ug)(1lb/454g) = lbs TCE/Hr TCEs = 114.10 ug/L ft³/min Flow rate = 176.1 $28.32L/ft^3 = 28.32 L/ft^3$ 60mins/hr = 60 min/hr $1g/10^{6}ug = 0.000001 g/ug$ 1lb/454g = 0.0022lbs/g Output Mass Loading Rate = 0.08 lbs TCE/Hr 1.80 lbs TCE/day

Notes:

1. Estimated Molecular weight of TCEg (Trichloroethylene) = 131.4 g/mole

Taken from the NIOSH Pocket Guide to Hazardous Chemicals

Table E-8Calculation of Final PCE Loading Rate from Deep Zone

Harley-Davidson Motor Company Operations, Inc. Area B - Soil Vapor Extraction Pilot Test

Sampling Event: VEW-1(D) B Tetrachloroethylene (PCE) 1. Convert Laboratory PCE concentration in volume/volume basis to a mass/volume basis: (MW/24.05 L)(ppmv) = ug/LEst. PCE $MW^1 =$ 165.8 g/mole $1 \text{ mole}^2 =$ 22.41 L Laboratory PCE Concentration = 18.493 ppmv PCE = 136.82 ug/L 2. Convert PCE concentration in mass/volume to estimated removal rate: (PCEs)(Flow rate)(28.32L/ft3)(60mins/hr)(1g/106ug)(1lb/454g) = lbs PCE/Hr PCEs = 136.82 ug/L ft³/min Flow rate = 176.1 $28.32L/ft^3 = 28.32 L/ft^3$ 60mins/hr = 60 min/hr $1g/10^{6}ug = 0.000001 g/ug$ 1lb/454g = 0.0022lbs/g Output Mass Loading Rate = 0.09 lbs PCE/Hr 2.16 lbs PCE/day

Notes:

1. Estimated Molecular weight of PCEg (Tetrachloroethylene) = 165.8 g/mole

Taken from the NIOSH Pocket Guide to Hazardous Chemicals